

R.M.D. ENGINEERING COLLEGE

(An Autonomous Institution)

REGULATIONS 2022

B.Tech. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

CURRICULUM & SYLLABI (For the students admitted during 2022-2023)

அறிவே

அக்கப்

R.M.D. ENGINEERING COLLEGE (An Autonomous Institution) REGULATIONS 2022 CHOICE BASED CREDIT SYSTEM

B.Tech. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

I. PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates can

- **PEOI:** Work effectively in inter-disciplinary field with the knowledge of Artificial Intelligence and Machine Learning to develop appropriate solutions to real-world problems.
- **PEO2:** Apply their knowledge to the technological revolution through life-long learning.
- **PEO3:** Excel as socially committed engineers or entrepreneurs with high ethical and moral values.
- **PEO4:** Pursue advanced studies and engage in innovative research in the field of Artificial Intelligence and Machine Learning.

II. PROGRAM OUTCOMES (POs)

- 1 **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2 **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles ofmathematics, natural sciences, and engineering sciences.
- 3 **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4 **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5 **Modern tool usage**: Create, select, and apply appropriate techniques, resources, andmodern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- 6 **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7 **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and needfor sustainable development.
- 8 **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9 **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10 **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11 **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12 **Life-long learning**: Recognize the need for, and have the preparation and ability toengage in independent and life-long learning in the broadest context of technological change.

III. PROGRAM SPECIFIC OUTCOMES (PSOs)

The Students will be able to

PSO1: Apply fundamental concepts of Artificial Intelligence and Data Science to solve technical problems.

- **PSO2:** Utilize Artificial Intelligence and Data Science tools to provide innovative business solutions.
- **PSO3:** Implement the domain knowledge to achieve successful career as an employee, entrepreneur

and an engineering professional.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES(PEOs) WITH PROGRAMME OUTCOMES(POs)

A broad relation between the programme objective and the outcomes is given in thefollowing table

PROGRAMME EDUCATIONAL	71			(PR	OGR	AMN	AE O	UTC	OME	S	
OBJECTIVES	-1	2	3	4 ^C	-5	6	7	8	9	10	11	12
I	3	3	3	3	2	2	2	1	1	1	1	1
II	3	3	3	3	2	1	1	1	3	3	1	3
III	2	2	2	2	2	3	2	3	3	1	1	1
IV	3	3	3	3	2	2	2	3	3	3	2	1

MAPPING OF PROGRAM SPECIFIC OBJECTIVES WITH PROGRAMME OUTCOMES

A broad relation between the Program Specific Objectives and the outcomes is given in the following table

PROGRAMME SPECIFIC					PR	OGR	AMN	AE O	UTC	OME	S	
OBJECTIVES	1	2	3	4	5	6	7	8	9	10	11	12
Ι	3	3	3	3	3	3	2	1	1	1	1	2

П	3	3	3	3	3	3	2	1	1	1	1	2
III	2	2	2	2	3	2	2	2	3	2	3	3

Contribution

1: Reasonable 2: Significant **R.M.D. ENGINEERING COLLEGE** (An Autonomous Institution) **REGULATIONS 2022**

3: Strong

B.Tech. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING CHOICE BASED CREDIT SYSTEM CURRICULUM FOR SEMESTERS I TO VIII

(For the students admitted during 2022-2023)

SEMESTER I

Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
THEO	ORY COURS	SES WITH LABORATORY	COMPONE	NT				
1	22MA101	Matrices and Calculus	BSC	5	3	0	2	4
2	22CH101	Engineering Chemistry	BSC	5	3	0	2	4
3	22CS101	Problem Solving using C++	ESC	5	3	0	2	4
4	22CS102	Software Development Practices	ESC	5	3	0	2	4
5	22EC101	Digital Principles and System Design	ESC	5	3	0	2	4
LABC	DRATORY (COURSES WITH THEORY	COMPONE	ENT				
6	22GE111	Computer Aided Engineering Graphics	ESC	3	1	0	2	2
LABC	ORATORY (COURSES 00	9	זטו		•		
7	22GE112	Product Development Lab-I	EEC	2	0	0	2	1
MAN	DATORY C	OURSES			•			
8	22MC101	Induction Program (Non Credit)	MC	3	3 We	eks		
		TOTAL		30	16	0	14	23

SEMESTER II

Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
THEO	ORY COURS	SES						
1	22GE101	Heritage of Tamils	HSMC	1	1	0	0	1
THEO	ORY COURS	SES WITH LABORATORY	COMPONE	NT				
			001110					
2	22MA201	Transforms and Numerical Methods	BSC	5	3	0	2	4
3	22CS201	Data Structures	ESC	5	3	0	2	4
4	22PH201	Physics for Computer Science and Information	BSC	5	3	0	2	4
5	22HS101	Professional Communication	HSMC	4	2	0	2	3
6	22CS202	Java Programming	ESC	5	3	0	2	4
7	22IT201	Database Management System	PCC	5	3	0	2	4
LABC	ORATORY (COURSES						
8	22GE211	Product Development Lab – II	EEC		0	0	2	1
MAN	DATORY CO	OURSES		5,0,2	1			
9	22CH102	Environmental Sciences and Sustainability (Non Credit)	МС	2	2	0	0	0
AUDI	T COURSES	5						
10	22AC201	Yoga for Stress Management	AC	1	1	0	0	0
		TOTAL		35	21	0	14	25

SEMESTER III

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
THE	EORY COUR	SES						
1.	22MA301	Discrete Mathematics	BSC	4	3	1	0	4
2.	22GE301	Universal Human Values II: Understanding Harmony	HSMC	3	3	0	0	3
3.	22CS302	Computer Organization and Architecture	ESC	3	3	0	0	3
4.	22GE201	Tamils and Technology	HSMC	1	1	0	0	1
THEORY	Y COURSES	WITH LABORATOR	У СОМРО	DNENT				
5.	22CS303	Design and Analysis of Algorithms	PCC	4	2	0	2	3
6.	22CS304	Operating Systems	PCC		2	0	2	3
7.	22AM301	Artificial Intelligence	PCC	5	3	0	2	4
LABORA	ATORY COU	JRSES						
8.	22GE311	Product Development Lab-III	EEC	2	0	0	2	1
EMPLO	YABILITY E	CNHANCEMENT COU	JRSES					
9.	22CS311	Aptitude and Coding Skills- I	EEC	2	0	0	2	1
10.	22AM311	Internship and Seminar	EEC	02 00	0	0	2	1
AUDIT (COURSES							
11.	22AC301	Value Education (Non Credit)	AC	1	1	0	0	0
		TOTAL		31	18	1	12	24

*2 weeks for one credit. Internship during 2 Semester Summer Vacation

SEMESTER IV

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
THEOI	RY COURSES WIT	H LABORATORY COM	PONENT					
1.	22MA401	Probability and Statistics	BSC	5	3	0	2	4
2.	22AM401	Neural Networks	PCC	4	2	0	2	3
3.	22AM402	Machine Learning Essentials	PCC	5	3	0	2	4
4.	22CS401	Distributed and Cloud Computing	PCC	4	2	0	2	3
5.	22CS402	Web Development Frameworks	PCC	5	3	0	2	4
6.		Professional Elective- I	PEC	4	2	0	2	3
LABOH	RATORY COURSE	S						
7.	22GE411	Product Development Lab-IV	EEC	2	0	0	2	1
EMPLO	DYABILITY ENHA	NCEMENT COURSES						
8.	22CS411	Aptitude and Coding Skills - II	EEC	2	0	0	2	1
9.	22CS412	Mini Project and Design Thinking	EEC	2	0	0	2	1
AUDIT	COURSES	Micha	1	710				
10.	22AC401	Yoga/Personality Development(Non-Credit)	AC	01	1	0	0	0
		TOTAL		34	16	0	18	24

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С				
THEOF	RY COURS	ES										
1.		Open Elective- I	OEC	3	3	0	0	3				
2.		Professional Elective -II	PEC	3	3	0	0	3				
3.		Professional Elective-III	PEC	3	3	0	0	3				
THEOF	RY COURS	ES WITH LABORATORY COMPO	NENT									
4.	22AM501	Deep Learning	PCC	5	3	0	2	4				
5.	22AM502	Data Exploration, Feature Engineering and Visualization	PCC	4	2	0	2	3				
EMPLO	OYABILIT	Y ENHANCEMENT COURSES	INTERF									
6.	22CS511	Advanced Aptitude and Coding Skills- I	EEC	2	0	0	2	1				
7.	22AM511	Internship and Career Readiness Course	EEC	2	0	0	2	1				
MAND	ATORY CO	DURSES										
8.	22MC501	Indian Constitution (Non Credit)	МС	1	1	0	0	0				
		TOTAL		23	15	0	8	18				

SEMESTER V

SEMESTER VI

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
THEOI	RY COURS	ES						
1.	22AM601	Automata Theory and Compiler Design	PCC	3	3	0	0	3
2.		Open Elective - II	OEC	3	3	0	0	3
3.		Professional Elective- IV	PEC	3	3	0	0	3
4.		Professional Elective -V	PEC	3	3	0	0	3
THEOI	RY COURS	ES WITH LABORATORY COMPON	NENT					
5.	22AM602	Foundation of Reinforcement Learning and Ensemble Methods	PCC	5	3	0	2	4
6.	22CS602	Object Oriented Software Engineering	PCC	4	2	0	2	3
EMPLO	OYABILITY	Y ENHANCEMENT COURSES						
7.	22CS611	Advanced Aptitude and Coding Skills - II	EEC	2	0	0	2	1
8.	22AM611	Mini Project	EEC	2	0	0	2	1

TOTAL	25	17	0	8	21
-------	----	----	---	---	----

		DENILDIEN	V 11					
S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
THEO	RY COURS	ES						
1.		Professional Ethics	HSMC	3	3	0	0	3
2.		Open Elective -III	OEC	3	3	0	0	3
3.		Open Elective -IV	OEC	3	3	0	0	3
4.		Professional Elective -VI	PEC	3	3	0	0	3
THEO	RY COURS	ES WITH LABORATORY COMPO	NENT					
5.	22AM701	Natural Language Processing	PCC	5	3	0	2	4
6.	.22AM702	Computer Vision	PCC	3	3	0	0	3
LABOI	RATORY C	OURSE						
7.	22AM711	MLOps	PCC	2	0	0	2	1
MAND	ATORY CO	DURSES						
8.	22MC711	Essence of Indian Knowledge Tradition (Non Credit)	MC	1	1	0	0	0
		TOTAL		24	18	0	6	20
		SEMESTER	VIII					

SEMESTER VII

SEMESTER VIII

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
EMPLO	OYABILITY	Y ENHANCEMENT COURSES		Б				
1.	22AM811	Project Work	EEC	16	0	0	16	8
		TOTAL		16	0	0	16	8

TOTAL NO. OF CREDITS: 163

CREDIT SUMMARY

				Cr	edits Pe	er Seme	ester					
S. No.	Subject Area	I	II	III	IV	v	VI	VII	VIII	Credit Total	Percentage	
1	HSMC	-	4	4	-	-	-	3	-	11	6.75%	
2	BSC	8	8	4	4	-	-	-	-	24	14.72%	
3	ESC	14	8	3	-	-	-	-	-	25	15.34%	
4	PCC	-	4	10	14	8	11	9	-	56	33.13%	
5	PEC	-	-	E-N C	3	6	6	3	-	18	11.04%	
8	OEC	-	-	r'u a	INTER	3	3	6	-	12	7.36%	
7	EEC	1	1	3	3	2	2	-	8	20	11.66%	
8	MC			V	\checkmark	\checkmark		\checkmark				
	Total	23	25	24	24	18	21	20	8	163		
				an E								

HSMC – Humanities and Social Sciences including Management courses; BSC – Basic Science Courses; ESC – Engineering
 Science Courses including workshop, drawing, basics of electrical/mechanical/computer etc.; PCC – Professional Core Courses;
 PEC – Professional Elective Courses relevant to chosen specialization/branch; OEC – Open Subjects–Electives from other
 technical and/or emerging subjects EEC – Project Work, Seminar and Internship in Industry or elsewhere

PROFESSIONAL ELECTIVES:

		PROFESSIONAL ELI	ECTIVES					
Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		DATA SCIENCE AND A	NALYTICS					
1.	22AM901	Data Science using Python	PEC	4	2	0	2	3
2.	22AM902	Data Analytics	PEC	4	2	0	2	3
3.	22AM903	Social Network Analytics	PEC	3	3	0	0	3
4.	22AM904	Text and Speech Analytics	PEC	3	3	0	0	3
5.	22AM905	Image and Video Analytics	PEC	3	3	0	0	3
6.	22AM906	Stream Processing and Analytics	PEC	3	3	0	0	3
		APPLIED AI						
7.	22AM907	AI in Block Chain	PEC	3	3	0	0	3
8.	22AM908	Augmented and Virtual Reality	PEC	4	2	0	2	3
9.	22AM909	Intelligent Robots	PEC	3	3	0	0	3
10.	22AM910	Generative AI	PEC	3	3	0	0	3
11.	22CS925	Game Development	PEC	3	3	0	0	3
12.	22CS921	Industrial IoT	PEC	3	3	0	0	3
		AI AND CLOU	D					
13.	22CS907	Cloud Foundations	PEC	4	2	0	2	3
14.	22CS909	Virtualization	PEC	3	3	0	0	3

15.	22CS910	DevOps	PEC	3	3	0	0	3
16.	22CS911	Data Engineering in Cloud	PEC	3	3	0	0	3
17.	22CS933	Machine Learning for NLP in Cloud	PEC	3	3	0	0	3
18.	22CS934	Cloud Services Management	PEC	3	3	0	0	3
		HIGH PERFORMANCE C	COMPUTING	ſ				
19.	22AM911	Multi-Core Architecture and	DEC	3	3	0	0	3
		Programming	FEC	5	5	0	0	3
20.	22AM912	GPU Computing	PEC	3	3	0	0	3
21.	22EC601	Digital Signal Processing	PEC	3	3	0	0	3
22.	22CS924	Quantum Computing	PEC	3	3	0	0	3
23.	22AM913	Scalable Machine Learning	PEC	3	3	0	0	3
24.	22AM914	Optimization Methods in Machine	DEC	3	3	0	0	3
		Learning	FEC	3	5	U	U	3

HONOURS VERTICALS:

		INTELLIGENT HEAI	THCARE					
Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	22AM915	AI and ML for Healthcare	PEC	4	2	0	2	3
2.	22AM916	Medical Image Analysis	PEC	3	3	0	0	3
3.	22AM917	Clinical Data Science	PEC	3	3	0	0	3
4.	22AM918	Deep Learning in Genomics and Life Sciences	PEC	3	3	0	0	3
5.	22AM919	Bio-Informatics	PEC	3	3	0	0	3
6.	22AM920	Smart and Interactive Healthcare Technologies	PEC	3	3	0	0	3
7.	22AM812	Capstone Project	PEC	12	0	0	12	6

		COMPUTATIONAL INT	ELLIGENCE					
Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	22AM921	Soft Computing	PEC	3	3	0	0	3
2.	22AM922	Applied AI and ML	PEC	3	3	0	0	3
3.	22AM923	Recommender Systems	PEC	3	3	0	0	3
4.	22AM924	Knowledge Engineering	PEC	3	3	0	0	3
5.	22AM925	Computational Neuroscience	PEC	3	3	0	0	3
6.	22AM926	AI Essentials	PEC	3	3	0	0	3
7.	22AM812	Capstone Project	PEC	12	0	0	12	6

		OPEN ELECTIVE – OFFERED TO OTH	ER DEPAR'	TMENTS				
Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	22AM907	AI in Block Chain	OEC	3	3	0	0	3
2.	22AM921	Soft Computing	OEC	3	3	0	0	3
3.	22AM925	Computational Neuroscience	OEC	3	3	0	0	3
4.	22AM919	Bio-Informatics	OEC	3	3	0	0	3

5.	22AM001	Introduction to Generative AI	OEC	3	3	0	0	3
6.	22AM002	Foundations of Natural Language Processing	OEC	3	3	0	0	3
7.	22AM003	Cognitive Science and Analytics	OEC	3	3	0	0	3

R2022 CURRICULUM OF B.TECH. (HONOURS) IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING WITH SPECIALIZATION IN

SI. No	NAME OF THE HONOURS DEGREE WITH SPECIALIZATION
1.	Computational Intelligence
2.	Intelligent Healthcare

R2022 CURRICULUM OF B.TECH. (HONOURS) IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Additional 18 credits to be completed from the courses offered in any Professional Elective Vertical

R2022 B.TECH. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING WITH MINOR DEGREE

SI. No	NAME OF THE MINOR 📈	OFFERRING DEPARTMENT
	DEGREE	
1.	Internet of Things	Electronics and Communication Engineering
2.	Advanced Web Development	Computer Science and Business Systems
3.	Fintech and Blockchain	Computer Science and Business Systems

R2022

MINOR DEGREE CURRICULUM OFFERED BY DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (for other B.E. / B.Tech. Programmes) MINOR DEGREE IN ARTIFICIAL INTELLIGENCE

SI. No	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	Т	Р	С
1.	22AM004	Introduction to Data Science	3	3	0	0	3
2.	22AM005	Introduction to Artificial Intelligence	3	3	0	0	3
3.	22AM006	Machine Learning Algorithms	3	3	0	0	3
4.	22AM007	Foundations of Deep Learning	3	3	0	0	3
5.	22AM812	Capstone Project	12	0	0	12	6

SYLLABUS

SEMESTER –I

22MA101	MATRICES & CALCULUS	L	Τ	P	С
221111101	(Common to All Branches)	3	0	2	4
OBJECTIV	/ES:				
The Course	e will enable learners to:				
ExplDeteIllus	ain the concepts of matrix algebra techniques needed for practical approxime the curvature of the curves. trate the simple applications of multivariable calculus and vector calculus and	olica ulus	ition	IS.	
• Elab	orate the concept and application of multiple integrals.				15
	MATRICES	D .			15
Eigenvalues Statement a orthogonal transformati Experime	and Eigenvectors of a real matrix – Properties of Eigenvalues and and applications of Cayley-Hamilton Theorem – Diagonalization transformation – Reduction of a quadratic form to canonical form on – Nature of quadratic forms.	Eig of i by	enve natr ortl Th	ices hogo eory	rs – by onal 7:9
 Intro Find Plott 	duction to SCILAB through matrices and general syntax. ing the Eigenvalues and Eigenvectors.				
5. 1100	ing the graph of a quadratic form.	La	abor	ator	y: 6
UNIT II	SINGLE VARIABLE CALCULUS				15
Curvature in	n Cartesian and Polar Co-ordinates – Centre and radius of curvatu	ure	– C	ircle	e of
curvature-E	volutes.				
Experime	ents using SCILAB:		Tł	neor	y: 9
 Eval Find Trac 	uating the radius of curvature. ing the coordinates of the center of curvature. ing of Curves.	-			
		La	abor	ator	<u>y: 6</u>
	MULTIVARIABLE CALCULUS		6		15
functions – . minima of f	Jacobian and properties – Taylor's series for functions of two variables unctions of two variables.	tion s - N	of Max	imp ima	and
.			Tł	neor	y: 9
Experime	nts using SCILAB:				
1. Eval 2 Eval	uating the minima of functions of several variables.				
3. Eval	uation of Jacobians.				
		La	abor	ator	y: 6
UNIT IV	MULTIPLE INTEGRALS				15

Double integrals – Change of order of integration – Area enclosed by plane curves – Triple integrals – Volume of solids.

Experiments using SCILAB:

- 1. Evaluating area under a curve.
- 2. Evaluating area using double integral..
- 3. Evaluation of volume by integrals.

UNIT V VECTOR CALCULUS

Gradient, divergence and curl (excluding vector identities) – Directional derivative – Irrotational and Solenoidal vector fields – Vector integration – Green's theorem in a plane and Gauss divergence theorem (Statement only) – Simple applications involving cubes and rectangular parallelopipeds.

Theory: 9

- Experiments using SCILAB:
 - 1. Evaluating gradient.
 - 2. Evaluating directional derivative.
 - 3. Evaluating divergent and curl.

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Use the matrix algebra methods to diagonalize the matrix.

CO2: Determine the evolute of the curve.

- CO3: Apply differential calculus ideas on the function of several variables.
- **CO4:** Evaluate the area and volume by applying the concept of multiple integration.

CO5: Utilize the concept of vector calculus in evaluating integrals.

TEXT BOOKS:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.

REFERENCES:

- 1. M. K. Venkataraman, "Engineering Mathematics", Volume I, 4th Edition, The National Publication Company, Chennai, 2003.
- 2. SivaramakrishnaDass, C. Vijayakumari, "Engineering Mathematics", Pearson Education India, 4th Edition 2019.
- 3. H. K. Dass, and Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand Private Limited, 3rd Edition 2014.
- 4. B.V. Ramana, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, 6th Edition, New Delhi, 2008.
- 5. S.S. Sastry, "Engineering Mathematics", Vol. I & II, PHI Learning Private Limited, 4th Edition, New Delhi, 2014.

LIST OF EQUIPMENTS:

1. SCILAB- Open source

Laboratory: 6

15

Laboratory: 6

TOTAL: 75 PERIODS

Theory: 9

22CHIOI (Common to All Branches) 3 0 2 4 OBJECTIVES: The Course will enable learners to: • To understand the water quality criteria and interpret its applications in water purification. • To gain insights into the basic concepts of electrochemistry and implement its applications in chemical sensors. • • To acquire knowledge on the fundamental principle of energy storage devices and relate it to electric vehicles. • <td< th=""></td<>
 OBJECTIVES: The Course will enable learners to: To understand the water quality criteria and interpret its applications in water purification. To gain insights into the basic concepts of electrochemistry and implement its applications in chemical sensors. To acquire knowledge on the fundamental principle of energy storage devices and relate it to electric vehicles. To identify the different types of smart materials and explore their applications in Engineering and Technology. To assimilate the preparation, properties and applications of nanomaterials in various fields. UNIT I WATER TECHNOLOGY 15
 The Course will enable learners to: To understand the water quality criteria and interpret its applications in water purification. To gain insights into the basic concepts of electrochemistry and implement its applications in chemical sensors. To acquire knowledge on the fundamental principle of energy storage devices and relate it to electric vehicles. To identify the different types of smart materials and explore their applications in Engineering and Technology. To assimilate the preparation, properties and applications of nanomaterials in various fields. UNIT I WATER TECHNOLOGY 15 Sources of water –Impurities - Drinking water quality parameters –Hardness and its types,
 To understand the water quality criteria and interpret its applications in water purification. To gain insights into the basic concepts of electrochemistry and implement its applications in chemical sensors. To acquire knowledge on the fundamental principle of energy storage devices and relate it to electric vehicles. To identify the different types of smart materials and explore their applications in Engineering and Technology. To assimilate the preparation, properties and applications of nanomaterials in various fields. UNIT I WATER TECHNOLOGY Sources of water –Impurities - Drinking water quality parameters –Hardness and its types,
 To gain insights into the basic concepts of electrochemistry and implement its applications in chemical sensors. To acquire knowledge on the fundamental principle of energy storage devices and relate it to electric vehicles. To identify the different types of smart materials and explore their applications in Engineering and Technology. To assimilate the preparation, properties and applications of nanomaterials in various fields. UNIT I WATER TECHNOLOGY Sources of water –Impurities - Drinking water quality parameters –Hardness and its types,
 in chemical sensors. To acquire knowledge on the fundamental principle of energy storage devices and relate it to electric vehicles. To identify the different types of smart materials and explore their applications in Engineering and Technology. To assimilate the preparation, properties and applications of nanomaterials in various fields. UNIT I WATER TECHNOLOGY 15 Sources of water –Impurities - Drinking water quality parameters –Hardness and its types,
 To acquire knowledge on the fundamental principle of energy storage devices and relate it to electric vehicles. To identify the different types of smart materials and explore their applications in Engineering and Technology. To assimilate the preparation, properties and applications of nanomaterials in various fields. UNIT I WATER TECHNOLOGY 15 Sources of water –Impurities - Drinking water quality parameters –Hardness and its types,
 To identify the different types of smart materials and explore their applications in Engineering and Technology. To assimilate the preparation, properties and applications of nanomaterials in various fields. UNIT I WATER TECHNOLOGY 15 Sources of water –Impurities - Drinking water quality parameters –Hardness and its types,
It is interfailed by the uniform types of small materials and explore their approximations in Engineering and Technology. It is interfailed by the preparation, properties and applications of nanomaterials in various fields. UNIT I WATER TECHNOLOGY 15 Sources of water –Impurities - Drinking water quality parameters –Hardness and its types, 14
To assimilate the preparation, properties and applications of nanomaterials in various fields. UNIT I WATER TECHNOLOGY 15 Sources of water –Impurities - Drinking water quality parameters –Hardness and its types,
fields. UNIT I WATER TECHNOLOGY 15 Sources of water –Impurities - Drinking water quality parameters –Hardness and its types, 15
UNIT I WATER TECHNOLOGY 15 Sources of water –Impurities - Drinking water quality parameters –Hardness and its types,
Sources of water –Impurities - Drinking water quality parameters –Hardness and its types,
problems - Municipal water treatment and disinfection (chlorination- break-point chlorination) Deiler treatment and disinfection Deiler fread water
Requirements - Internal treatment (phosphate colloidal sodium aluminate and Calgon
conditioning). External treatment – Ion exchange demineralization - Principle, process and fouling.
Desalination of brackish water: Reverse osmosis -principle-types of membranes, process and
fouling.
(Theory-9)
Determination of total, temporary and permanent nardness of water by EDTA method.
Determination of alkalinity in water sample
(Laboratory-6)
UNIT IIELECTROCHEMISTRY AND SENSORS15
Introduction- Conductance- factors affecting conductance - Electrodes- origin of electrode
potential - single electrode potential, standard electrode potential - measurement of single
electrode potential –over voltage - reference electrodes (standard hydrogen electrode, calomel
problems Electrochemical series and its applications
Chemical sensors – Principle of chemical sensors – Breath analyzer– Gas sensors – CO2 sensors-
Sensor for health care – Glucose sensor.
(Theory-9)
Determination of the amount of naOH using a conductivity meter.
Determination of the amount of given hydrochloric acid using a pH meter
(Laboratorv-6)
UNIT III ENERGY STORAGEDEVICES AND ENERGYSOURCES 15
Batteries – Primary alkaline battery - Secondary battery - Pb-acid battery, Fuel cell - H2 – O2 fuel
cell.
Batteries used in E- vehicle: Ni-metal hydride battery, Li-ion Battery, Li-air Battery
Nuclear Energy – Nuclear fission, fusion, differences, characteristics – nuclear chain reactions –
Ingin water nuclear reactor – Dieeder reactor. (Theory-9)

Determination of single electrode potential of the given electrode. Estimation of the iron content of the given solution using apotentiometer. Determination of electrochemical cell potential (using different electrodes/ different concentrations of electrolytes)

	(Laborator	y-6)
UNIT IV	SMART MATERIALS FOR ENGINEERING APPLICATIONS	15
Polymers –	Definition – Classification – smart polymeric materials - Preparation, properties a	and
applications	of Piezoelectric polymer - Polyvinylidene fluoride (PVDF), Electroactive polym	er-
Polyaniline	(PANI) and Biodegradable polymer - Polylactic acid (PLA).	
Polymer con	nposites: Definition, Classification – FRP's – Kevlar.	
Shape Mem	ory Alloys: Introduction, Shape memory effect – Functional properties of SMAs	_
Types of SN	IA - Nitinol (Ni-Ti) alloys - applications.	
Chromogen	ic materials: Introduction – Types - applications.	
υ	(Theor	v-9)
Determinati	on of themolecular weight of polymer using Ostwald viscometer.	5-7
Application	of polymeric fibers in 3D printing.	
	(Laborator	v-6)
UNIT V	NANO CHEMISTRY	15
Introduction	- synthesis - top-down process (laser ablation, chemical vapor deposition), bott	om-
up process	(precipitation, electrochemical deposition) – properties of nanomaterials – type	es –
nanotubes -	carbon nanotubes, applications of CNT - nanocomposites – General application	s of
nanomateria	is in electronics information technology medical and healthcare ene	rov
environmen	tal remediation construction and transportation industries	-87,
entinoni	(Theor	v-9)
Determinati	on of concentration of BaSO4 nanoparticles by conductometric titrations	J - J
Prenaration	of ZnO nanocrystal by precipitation method	
reparation	(Laborator	v-6)
		$\frac{1}{100}$
		00

OUTCOMES:

At the end of this course, the students will be able to:

- **CO1:** Interpret the water quality parameters and explain the various water treatment methods.
- CO2: Construct the electro chemical cells and sensors.
- CO3: Compare different energy storage devices and predict their relevance in electric vehicles.
- **CO4:** Classify different types of smart materials, their properties and applications in Engineering and Technology.

CO5: Integrate the concepts of nano chemistry and enumerate its applications in various fields.

TEXT BOOKS:

- 1. P. C. Jain and Monika Jain, "Engineering Chemistry", 17th Edition, Dhanpat Rai PublishingCompanyPvt. Ltd., New Delhi, 2022.
- 2. SivasankarB., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2012.

REFERENCES:

- 1. S.S. Daraand S.S. Umare, "A Textbook of Engineering Chemistry",12thEdition, S.Chand&Company, NewDelhi, 2013.
- 2. V.R. Gowarikar, Polymer Science, 2nd edition, New Age International Publishers, 2021.
- 3. J. C. Kuriacose and J. Rajaram, "Chemistry in Engineering and Technology", Volume 1&Volume -2, Tata McGraw-Hill Education Pvt. Ltd., 2010.
- 4. Geoffrey A. Ozin, Andre C. Arsenault and Ludovico Cademartiri, "Nanochemistry: A Chemical ApproachtoNanomaterials",2ndEdition,RSC publishers,2015.
- 5. PrasannaChandrasekhar, "Conductingpolymers, fundamentals and applications-Including

Carbon Nanotubes and Graphene", Second Edition, Springer Science & Business Media, New York, 2019.

6. J. Mendham, R. C. Denney, J. D. Barnes, M. J. K. Thomas and B. Sivasankar, "Vogel's Quantitative Chemical Analysis", 6th edition, Pearson Education Pvt. Ltd., 2019.

LIST OF EQUIPMENTS:

- 1. Conductivity meter 20 Nos.
- 2. pH meter 19 Nos.
- 3. Potentiometer 20 Nos.

	PROBLEM SOLVING USING C++	L	Τ	Р	С
22CS101	(Common to All Branches)	3	0	2	4
OBJECTIV	'ES:				
The Course	will enable learners to:				
•]	o learn problem solving and programming fundamentals.				
•]	o gain knowledge on pointers and functions.				
•]	o apply the principles of object orientated programming.				
•]	o understand operator overloading, inheritance and polymorphism	m.			
•]	o use the functionalities of I/O operations, files build C++ progra	ams us	sing		
e	xceptions.				· -
UNIT I	PROBLEM SOLVING AND PROGRAMMING FUNDAMI	ENTA	LS		15
Computation	nal thinking for Problem solving – Algorithmic thinking for Proble	em sol	ving	- Buil	ding
Blocks - Pro	blem Solving and Decomposition - Dealing with Error – Evaluat	ion.			
Overview of	f C – Data types – Identifiers – Variables – Storage Class Spec	cifiers	– C	onsta	nts –
Operators -	Expressions – Statements – Arrays and Strings – Single-D	Dimen	siona	I – '.	ľwo-
Dimensiona	Arrays – Arrays of Strings – Multidimensional Arrays.				
I !					
List of Exer	cises:				
I. WIII	Find the sum of individual digits of a positive integer				
a h	Compute the GCD of two numbers				
	Find the roots of a number (Newton's method)				
2. Writ	c C/C++ programs using arrays:				
a	Find the maximum of an array of numbers.				
b	. Remove duplicates from an array of numbers.				
С	. Print the numbers in an array after removing even numbers.				
3. Writ	e C/C++ programs using strings:				
a	. Checking for palindrome.				
b	. Count the occurrences of each character in a given word.				
UNIT II	POINTERS AND FUNCTIONS				15
Dointora Va	richlas Operators Expressions Deinters and Arrays Europ	iona	See	Da Du	
Function Ar	guments – return Statement – Recursion – Structures – Unions –	Enum	erati	ons.	ies –
List of Exe	rcises:				
1. Gene	erate salary slip of employees using structures and pointers.	Crea	ate a	stru	cture
стр	loyee with the following members:				

EID, Ename, Designation, DOB, DOJ, Basicpay

Note that DOB and DOJ should be implemented using structure within structure. 2. Compute internal marks of students for five different subjects using structures and

2.	Com	pute internal marks of students for five different subjects using structures	and
UNIT		CLASSES AND OBJECTS	15
Concer		CLASSES AND OBJECTS	13
and Ot Memor Objects functio	ojects cy All s - Ot ns - C	- Member functions - Nesting of member functions - Private member function location for Objects - Static Data Members - Static Member functions - Arra ojects as function arguments - Returning objects - friend functions – Const Mer Constructors – Destructors.	ns - y of nber
List of	Exer	rcises:	
1.	Write	e a program Illustrating Class Declarations, Definition, and Accessing Class Meml	bers.
2.	Prog	ram to illustrate default constructor, parameterized constructor and copy construct	tors.
UNIT	IV	OPERATOR OVERLOADING, INHERITANCE AND POLYMORPHISM	15
Operato – Virtu classes Pointer Functio	or Ov al Bas to o ons – 1	rerloading - Overloading Using Friend functions – Inheritance – Types of inheritations - Abstract Class – Constructors in Derived Classes - member class: nestinobjects – this pointer- Pointer to derived Class - Virtual functions – Pure Vi Polymorphism.	ance 1g of rtual
1. 2. 3. 4. 5.	Write Write Progr Progr Write a) S	e a Program to Demonstrate the i) Operator Overloading. ii) Function Overloading e a Program to Demonstrate Friend Function and Friend Class. ram to demonstrate inline functions. ram for Overriding of member functions. e C++ programs that illustrate how the following forms of inheritance are support lingle inheritance b)Multiple inheritance c)Multi level inheritance d)Hierarch	g. ed: hical
UNIT	V	I/O, FILES AND EXCEPTIONS	15
C++ St - File I Except	reams pointe ion ha	s – Unformatted I/O - Formatted Console I/O – Opening and Closing File – File mers and their manipulations – Templates – Class Templates – Function Templa and ling.	odes tes -
List of	Exer	reises.	
1. 2. 3. 4.	Progr Coun seque Write Mini	ram to demonstrate pure virtual function implementation. In the number of account holders whose balance is less than the minimum balance us ential access file. In a Program to Demonstrate the Catching of all Exceptions. project.	sing
		TOTAL: 45+30 = 75 PERIO	ODS
OUTC At the	OME end o	ES: of this course, the students will be able to:	

At the end of this course, the students will be able to:

CO1: Solve problems using basic constructs in C.

CO2: Implement C programs using pointers and functions.

CO3: Apply object-oriented concepts and solve real world problems.

CO4: Develop C++ programs using operator overloading and polymorphism.

CO5: Implement C++ programs using Files and exceptions.

TEXT BOOKS:

1. Herbert Schildt, "The Complete Reference C++", 4th edition, MH, 2015. (Unit 1 & 2)

2. E Balagurusamy,"Object Oriented Programming with C++", 4th Edition, Tata McGraw-Hill Education, 2008. (Unit 3, 4 & 5)

REFERENCES:

- 1. Karl Beecher,"Computational Thinking: A beginner's guide to problem-solving and programming", BCS Learning & Development Ltd, 2017. (Unit 1)
- 2. Nell Dale, Chip Weems, "Programming and Problem Solving with C++", 5th Edition, Jones and Barklett Publishers, 2010.
- 3. John Hubbard, "Schaum's Outline of Programming with C++", MH, 2016.
- 4. Yashavant P. Kanetkar, "Let us C++", BPB Publications, 2020
- 5. ISRD Group, "Introduction to Object-oriented Programming and C++", Tata McGraw-Hill Publishing Company Ltd., 2007.
- 6. D. S. Malik, "C++ Programming: From Problem Analysis to Program Design", Third Edition, Thomson Course Technology, 2007.
- 7. https://infyspringboard.onwingspan.com/web/en/app/toc/ lex_auth_01297200240671948837_shared/overview

LIST OF EQUIPMENTS:

1. Standalone desktops with C/C++ compiler (or) Server with C/C++ compiler.

ENGINEEKING GULLEGE

	DIGITAL PRINCIPLES AND SYSTEMS DESIGN	L	Т	P	С	
22EC101	(Common to All Branches)	3	0	2	4	
OBJECTIVES:						
The Course	will enable learners to:					
• To a	cquire the knowledge in Digital fundamentals and its simplification m	netho	ods.			
• To fa	amiliarize the design of various combinational digital circuits using lo	gic	gate	s.		
• To re	ealize various sequential circuits using flip flops.	0	U			
• To in	nterpret various clocked sequential circuits.					
• To e	lucidate various semiconductor memories and related technology.					
• To b	uild various logic functions using Programmable Logic Devices.					
UNIT I	BOOLEAN ALGEBRA AND LOGIC GATES				9	
Review of r	number systems-representation-conversions, Review of Boolean algo	ebra	- the	eore	ms,	
sum of proc	luct and product of sum simplification, canonical forms, min term	and	ma	x te	rm,	
Simplification	on of Boolean expressions-Karnaugh map, Implementation of Boole	an	expi	essi	ons	
using logic g	gates and universal gates.					
List of Exp	eriments:					
1. Impleme	entation of Boolean expression using logic gates.					
UNIT II	COMBINATIONAL LOGIC CIRCUITS				9	
Design of co	mbinational circuits - Half and Full Adders, Half and Full Subtractors,	Bin	ary	Para	llel	
Adder – Car	rry look ahead Adder, Magnitude Comparator, Decoder, Encoder, Pr	iori	ty E	nco	der,	
Mux/De-mu	x, Parity Generator/Checker		•			
List of Exp	eriments:					
1. Design of	of adders					
2. Design of	ofsubtractors.					
3. Design of	of binary adder using IC7483					
4. Design of	of Multiplexers &Demultiplexers.					
5. Design of	5. Design of Encoders and Decoders.					
	18					

6. Implementation of a boolean function using a multiplexer.	
UNIT III SEQUENTIAL CIRCUITS	9
 Flip flops – SR, JK, T, D, Master/Slave FF – operation and excitation tables, Asynchronous Synchronous Counters Design - Shift registers, Universal Shift Register List of Experiments: Design and implementation of 3 bit ripple counters. Design and implementation of 3 bit synchronous counter Design and implementation of shift registers 	s and
UNIT IV SYNCHRONOUSSEQUENTIAL CIRCUITS DESIGN	9
Design of clocked sequential circuits - Moore/Mealy models, state minimization, state assign circuit implementation	ment,
UNIT V MEMORY AND PROGRAMMABLE LOGIC DEVICES	9
Basic memory structure ROM: PROM – EPROM – EEPROM –RAM – Static and dynamic – Programmable Logic Devices: Programmable Logic Array (PLA) – Programmable Array (PAL) – Implementation of combinational logic circuits using PLA, PAL.	RAM Logic
TOTAL: 75 PER	ODS
OUTCOMES:	
At the end of this course, the students will be able to:	
 CO1: Implement digital circuits using simplified Boolean functions. CO2: Realize Combinational circuits for a given function using logic gates. CO3: Demonstrate the operation of various counters and shift registers using Flip Flops. CO4: Analyze Synchronous Sequential circuits. CO5: Summarize the various types of memory devices. CO6: Design the Combinational circuits using Programmable Logic Devices. CO7: Perform practical exercises as an individual and / or team member to manage the task time. CO8: Express the experimental results with effective presentation and report. TEXT BOOKS: 	in
 M. Morris Mano and Michael D. Ciletti, Digital Design, With an Introduction to the Veri HDL, VHDL, and System Verilog, 6th Edition, Pearson, 2018. S.Salivahanan and S.Arivazhagan, Digital Circuits and Design, 5th Edition, Oxford Universes, 2018. 	log ersity
REFERENCES:	
 A.Anandkumar, Fundamental of digital circuits, 4th Edition, PHI Publication,2016. WilliamKleitz, Digital Electronics-A Practical approach to VHDL, Prentice Hall Internati Inc, 2012. CharlesH.Roth, Jr. andLarry L. Kinney, Fundamentals of Logic Design, 7th Edition, Thom Learning, 2014. Thomas L. Eloyd, Digital Fundamentals, 11th Edition, Pearson Education Inc. 2017. 	onal son
5.John.M Yarbrough, Digital Logic: Applications and Design, 1st Edition, Cengage India, 2 NPTEL LINK: <u>https://nptel.ac.in/courses/108/105/108105132/</u>	.006.

22CS102

SOFTWARE DEVELOPMENT PRACTICES (Common to All Branches)

L	Т	Р	С
3	0	2	4

OBJECTIVES:

The Course will enable learners to:

- To discuss the essence of agile development methods.
- To set up and create a GitHub repository.
- To create interactive websites using HTML
- To design interactive websites using CSS.
- To develop dynamic web page using Java script.

Software Engineering Practices – Waterfall Model - Agility – Agile Process – Extreme Programming - Agile Process Models – Adaptive Software Development – Scrum – Dynamic Systems Development Method – Crystal – Feature Driven Development – Lean Software Development – Agile Modeling – Agile Unified Process – Tool set for Agile Process.

Introduction to Git –Setting up a Git Repository - Recording Changes to the Repository - Viewing the Commit History - Undoing Things - Working with Remotes -Tagging - Git Aliases - Git Branching - Branches in a Nutshell - Basic Branching and Merging - Branch Management - Branching Workflows - Remote Branches - Rebasing.

Introduction to GitHub – Set up and Configuration - Contribution to Projects, Maintaining a Project – Scripting GitHub.

List of Exercises:

- 1. Form a Team, Decide on a project:
 - a) Create a repository in GitHub for the team.
 - b) Choose and follow a Git workflow
 - Each team member can create a StudentName.txt file with contents about themselves and the team project
 - Each team member can create a branch, commit the file with a proper commit message and push the branch to remote GitHub repository.
 - Team members can now create a Pull request to merge the branch to master branch or main development branch.
 - The Pull request can have two reviewers, one peer team member and one faculty. Reviewers can give at least one comment for Pull Request updating.
 - Once pull request is reviewed and merged, the master or main development branch will have files created by all team members.
- 2. Create a web page with at least three links to different web pages. Each of the web pages is to be designed by a team member. Follow Git workflow, pull request and peer reviews.
- 3. Form a Team, Decide on a project:
 - c) Create a repository in GitHub for the team.
 - d) Choose and follow a Git workflow
 - Each team member can create a StudentName.txt file with contents about themselves and the team project
 - Each team member can create a branch, commit the file with a proper commit message and push the branch to remote GitHub repository.
 - Team members can now create a Pull request to merge the branch to master branch or main development branch.
 - The Pull request can have two reviewers, one peer team member and one faculty. Reviewers can give at least one comment for Pull Request updation.

• Once pull request is reviewed and merged, the master or main development branch will have files created by all team members.

4. Create a web page with at least three links to different web pages. Each of the web pages is to be designed by a team member. Follow Git workflow, pull request and peer reviews.

UNIT II HTML 1	15
Introduction – Web Basics – Multitier Application Architecture – Cline-Side Scripting ver Server-side Scripting – HTML5 – Headings – Linking – Images – Special Characters Horizontal Rules – Lists – Tables – Forms – Internal Linking – meta Elements – Form input Ty – input and datalist Elements – Page-Structure Elements.	and ypes
List of Exercises:	
1. Create web pages using the following:	
• Tables and Lists	
• Image map	
• Forms and Form elements	
• Frames	
UNIT III CSS 1	15
Types and Media Queries – Drop-Down Menus – Text Shadows – Rounded Corners – Color Box Shadows – Linear Gradients – Radial Gradients – Multiple Background Images – Im Borders – Animations – Transitions and Transformations – Flexible Box Layout Modul Multicolumn Layout. List of Exercises: 1. Apply Cascading style sheets for the web pages created.	our – nage le –
UNIT IV JAVASCRIPT BASICS 1	15
Introduction to Scripting – Obtaining user input – Memory Concepts – Arithmetic – Decis Making: Equality and Relational Operators – JavaScript Control Statements – Function Program Modules – Programmer-defined functions – Scope rules – functions – Recursion – Arr – Declaring and Allocating Arrays – References and Reference Parameters – Passing Array Functions – Multidimensional arrays.	sion ns – rays ys to
List of Exercises:	
1. Form Validation (Date, Email, User name, Password and Number validation) us	sing
JavaScript.	
UNIT VJAVASCRIPT OBJECTS1	15
Objects – Math, String, and Date, Boolean and Number, document Object – Using JSON Represent objects – DOM: Objects and Collections – Event Handling.	N to

1. Implement Event Handling in the web pages.

Mini Projects-Develop any one of the following web applications (not limited to one) using above technologies.

- a. Online assessment system
- b. Ticket reservation system

- c. Online shopping
- d. Student management system
- e. Student result management system
- f. Library management
- g. Hospital management
- h. Attendance management system
- i. Examination automation system
- j. Web based chat application

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Apply agile development methods in software development practices.

CO2: Set up and create a GitHub repository.

CO3:Develop static and dynamic webpages using HTML.

CO4: Design interactive personal or professional webpages using CSS.

CO5: Develop web pages using Java script with event-handling mechanism.

TEXT BOOKS:

1. Roger S. Pressman, "Software Engineering: A Practitioner's Approach", McGraw Hill International Edition, Nineth Edition, 2020.

TOTAL: 75 PERIODS

- 2. Scott Chacon, Ben Straub, "Pro GIT", Apress Publisher, 3rd Edition, 2014.
- 3. Deitel and Deitel and Nieto, "Internet and World Wide Web How to Program", Pearson, 5th Edition, 2018.

REFERENCES:

- 1. Roman Pichler, "Agile Product Management with Scrum Creating Products that Customers Love", Pearson Education, 1 st Edition, 2010.
- 2. Jeffrey C and Jackson, "Web Technologies A Computer Science Perspective", Pearson Education, 2011.
- 3. Stephen Wynkoop and John Burke, "Running a Perfect Website", QUE, 2nd Edition, 1999.
- 4. Chris Bates, "Web Programming Building Intranet Applications", 3rd Edition, Wiley Publications, 2009.
- 5. Gopalan N.P. and Akilandeswari J., "Web Technology", Second Edition, Prentice Hall of India, 2014.
- 6. https://infyspringboard.onwingspan.com/web/en/app/toc/ lex_auth_013382690411003904735_shared/overview
- 7. https://infyspringboard.onwingspan.com/web/en/app/ toc/lex_auth_0130944214274703362099_shared/overview

LIST OF EQUIPMENTS:

Systems with either Netbeans or Eclipse

Java/JSP/ISP Webserver/Apache

Tomcat / MySQL / Dreamweaver or

Equivalent/ Eclipse, WAMP/XAMP

22GE111	COMPUTER AIDED ENGINEERING GRAPHICS	L	Т	Р	C
	(Common to All Branches)	1	0	2	2

OBJECTIVES:

The Course will enable learners to:

- To help students understand universal technical drawing standards.
- To provide training on drafting software to draw part models.
- To demonstrate the concepts of orthographic and isometric projections.
- To use drawing skills for communicating concepts, ideas for engineering product design.
- Use pictorial views to visualize and draw the isometric view of the objects.

- 030	petorial views to visualize and draw the isometric view of the objects.	T
UNIT I	INTRODUCTION TO CONVENTIONS IN ENGINEERING DRAWING AND CONIC SECTIONS	9
Introduction	to Engineering Drawing - Importance of graphics in engineering applications -	Lise
of drofting i	not support of the second	0.30
	instruments – Bis conventions and specifications – Size, layout and folding of	1
drawing she	ets – Lettering and dimensioning. Conic curves - Ellipse, Parabola and Hyperbol	a by
Eccentricity	r method. (Theory	(-3)
Drawing of	a title block with necessary text projection symbol and lettering using drafting	5)
Drawing or	a the block with necessary text, projection symbol and lettering using dratting	
software.		
Drafting of	Conic curves - Ellipse, Parabola and Hyperbola	
	(Laboratory	<u>- 6)</u>
UNIT II	ORTHOGRAPHIC PROJECTION	9
Visualizatio	n concepts and Orthographic Projection - Layout of views Orthographic	<u> </u>
Projection	Conversion of nictorial discrem into orthographic views – Orthographic	
Projection-	Conversion of pictorial diagram into orthographic views.	
	(Theory	- 3)
Drawing ort	thographic view of simple solids like Prism Pyramids Cylinder Cone etc. and	
Drawing on	mographic view of simple solids like rfishi, ryrannus, Cymuer, Cone, etc, and	
dimensionin	^{1g} .	
Drawing of	orthographic views from the given pictorial diagram.	
	(Laboratory	y -6)
UNIT III	PROJECTION OF PLANES	9
Projection of	f planes (polygonal and circular surfaces) inclined to both the planes by rotating	1
abiast math	of	
object meth	ou.	
	(Theory	- 3)
Drawing of	plane Surface inclined to HP.	
Drawing of	plane Surface inclined to VP.	
	(Laboratory	y -6)
UNIT IV	PROJECTION OF SOLIDS	9
Projection o	f simple solids like Prisms, Pyramids, Cylinder and Cone when the axis is incline	-d
to UD by rot	toting object method	Ju
10 HP UY 10		2)
	(Theory	- 3)
Drawing of	simple solids like prism and pyramids when the axis is inclined to HP.	
Drawing of	simple solids like cylinder and cone when the axis is inclined to HP.	
	(Laboratory	y -6)
UNIT V	ISOMETRIC DRAWING	9
D: :1		1
Principles o	f isometric view – Isometric view of simple solids – Prism, Pyramid, Cylinder an	d
cone.	(Theory	(3)
Description	(Theory	- 5)
Drawing isc	ometric projection of simple solids.	
Modeling of	t 2D to 3D objects using drafting software.	
	(Laboratory	y -6)
	TOTAL: 45 PERIO)DS

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Explain the various engineering standards required for drafting and explore knowledge in conic sections.

CO2: Draw the orthographic views of 3Dprimitive objects.

CO3: Describe the projection of plane surfaces by the rotating plane method.

CO4: Apply the projection concepts and drafting tools to draw projections of solids. CO5:

Sketch the pictorial views of the objects using CAD tools.

TEXT BOOKS:

- 1. Natarajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 33rd Edition, 2020.
- 2. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 15th Edition, 2019.

REFERENCES:

- 1. Bhatt N.D. "Engineering Drawing", Charotar Publishing House, 53rd edition ,2019.
- 2. BasantAgarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 3rd Edition, 2019.
- 3. Engineering Drawing Practice for Schools and Colleges BIS SP46:2003 (R2008), Published by Bureau of Indian Standards (BIS), 2008.
- 4. Parthasarathy. N.S and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2019.
- 5. Gopalakrishna. K.R., Engineering Drawing Vol. 1 & 2, Subhas Publications, 27th Edition, 2017.

SEMESTER -II

2284 8 201	TRANSFORMS AND NUMERICAL METHODS	L	Т	P	С
ZZIVIAZUI		3	0	2	4
OBJECTIV	ES:				
The Course	will enable learners to:				
• Introduce	e the concepts of Laplace transforms and Z-transforms.				
• Illustrate	the application of transforms in solving differential and d	iffere	nce e	quatio	ons.
• Explain t	he Numerical methods for handling algebraic and transcen	ndent	al equ	ations	s.
• Introduce	e the numerical techniques for interpolation, differentiation	n and	integ	ration	•
UNIT I	LAPLACE TRANSFORMS				15
Laplace tran	sforms - Sufficient condition for existence - Transform of	of eler	nenta	ry fun	ctions –
Basic proper	rties - Transforms of derivatives and integrals of func	tions	– De	erivati	ves and
integrals of t	ransforms -Transforms of unit step function and impulse	functi	ions –	Trans	sform of
periodic fund	ctions. Inverse Laplace transform – Convolution theorem	(State	ment	only).	•
				Т	heory: 9

22CE112	DDODUCT DEVELODMENT LAB I	Т	Т	D	С
22GE112	(Common to All Branches)	0	0	2	1
The student	s may be grouped into 3 to 4 and work under a	pro	iect su	pervi	sor. The
device/system	n/component/prototype Idea to be developed by the stude	nts ar	nd a fin	al pre	esentation
to be done by	the students about the idea generated at the end of the se	emeste	er.	F	
OBJE	CTIVES:				
The Course	will enable learners to:				
• Unde	rstand the functionalities and limitation of various machi	ne/eq	uipmei	nt	
• Dem	onstrate various operations that can be performed to mach	hines	1		
• Sumi	narize the basic principles of machines to convert their ide	eas in	to proc	lucts	
	1 1		1		
I 1. Study	of Manufacturing Processes (Carpentry, Plumbing, Mach	ines a	nd We	lding).
2. Study	of fundamental operations of 3D Printer and Scanner wit	h Sof	tware.	_	
3. Study	of Smart Machining (CNC and Laser cutting) and Engrav	ving 7	Technic	jues.	
II 1. Study	of Fundamental of Circuit Design.				
2. Study	of PCB Milling Machine.				
3. Study	v of Soldering and Desoldering.				
III 1. Study	of Computer Peripheral Devices (Processing Information	Devi	ices)		
IV 1. Prese	nt the Product Idea Presentation - Phase – I.				
	ENGINEEKING GULLEGE	TC)TAL:	<u>30 P</u>	ERIODS
Note:					
The students	can select the prototype to be made of their choice after le	arnın	g the at	oove	exercises.
	OMES:				
Upon comp	etion of the course, the students will be able to:				
COI: Under	stand the concept of manufacturing processes.				
CO2: Descri	be the working of the machine element.				
CO3: Discus	arize the basics of core angineering concents				
CO ₅ : Descri	be the process for converting ideas into products				
I IST (DE EQUIPMENTS .				
1 CNC	Router – 1 No			-	
2 3D P	rinter – 1 No				
3. 3D S	canner -1 No.				
4. Laser	cutting Machine – 1 No.				
5. Centr	re lathe – 2 Nos.				
6. Arc v	velding transformer with cables and holders – 2 Nos.				
7. Plum	bing tools – 2 Nos.				
8. Carp	entry tools – 2 Nos.				
9. Mult	meter – 10 Nos.	Ш			
10. Drilli	ng Machine – 1 No.				
11. Solde	er Stations 5 Sets				
12. Deso	ldering Machine – 1 No.				
13. PCB	Milling Machine – 1 No.				
14. Varia	ble Power Supply – 1 No.				
15. Elect	ronic Components like Resistors, Transistors, Diode, Indu	ictor,	Capaci	itor, e	etc. – 10
Sets					
16. Perso	nal Desktop Computers – 30 Nos.				
Experimen	ts using SCILAB:				
	ing Laplace transform of a function.				
2. Find	ing inverse Laplace 1 ransforms.	ofer			
3. Dete	ennine the input for given output function of Laplace I far	isiorn	1.	Laha	ratory 6
TINIT'T IT	7 TDANSEODMS			Lauu	1 ator y. 0
UNITI	L – I KANSPUKIVIS				15

Z-transforms – Elementary properties – Inverse Z-transforms – partial fractions method – residues method – Convolution theorem.

Experiments using SCILAB:

- 1. Finding Z –transform of a sequence.
- 2. Finding convolution of two sequences.
- 3. Plotting the input and output function of Z transform.

UNIT III SOLUTION OF DIFFERENTIAL AND DIFFERENCE EQUATIONS

Solution of linear ordinary differential equation of second order with constant coefficients and first order simultaneous equations with constant coefficients using Laplace transform. Formation of difference equations – Solution of first and second order difference equations with constant coefficients using Z-transform.

Theory: 9

Experiments using SCILAB:

- 1. Solving second order Ordinary Differential Equation.
- 2. Finding the Laplace transform and its inverse of a function numerically.
- 3. Finding the Z-transform numerically

UNIT IVSOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS15

Solution of algebraic and transcendental equations by Newton Raphson method - Solution of linear system of equations – Gauss elimination method – Gauss Jordan method – Gauss Seidel Iterative method– Eigenvalues of a matrix by Power method.

Experiments using SCILAB:

- 1. Finding the real roots of algebraic and transcendental equations using Newton Raphson method.
- 2. Finding the largest Eigenvalue by power method.
- 3. Solving system of linear equations using Gauss Seidel Method.

Laboratory: 6

15

UNIT V NUMERICAL DIFFERENTIATION AND INTEGRATION

Finite differences – Forward and Backward differences – Interpolation – Newton's forward and backward interpolation formulae - Lagrange's interpolation for unequal intervals - Numerical Differentiation - Newton's and Lagrange's formulae - Numerical integration using Trapezoidal and Simpson's 1/3 rules – Evaluation of double integrals by Trapezoidal and Simpson's 1/3 rules.

Experiments using SCILAB:

- 1. Finding approximately the missing value using Lagrange interpolation.
- 2. Evaluating line integrals by trapezoidal rule.
- 3. Evaluating line integrals by Simpson's rule.

Laboratory: 6

TOTAL: 75 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:

CO1: Determine Laplace transform and inverse transform of simple functions.

CO2: Determine Z- transform and inverse transform of simple functions.

CO3: Solve ordinary differential equations using Laplace transform and difference equations using Z-Transform.

CO4: Compute the solutions of algebraic, transcendental and the system of equations.

Laboratory: 6

15

Theory: 9

Laboratory: 6

Theory: 9

Theor

CO5: Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.

TEXTBOOKS:

- 1. Bali N., Goyal M. and Watkins C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 2. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi, 2015.

REFERENCES:

- 1. Erwin. Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2. Jain R.K. and Iyengar S. R. K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics", Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.
- 4. Mathews, J.H. "Numerical Methods for Mathematics, Science and Engineering", 2nd Edition, Prentice Hall, 1992.
- 5. Sastry S.S, "Introductory Methods of Numerical Analysis", PHI Learning Pvt. Ltd, 5th Edition, 2015.

DATA STRUCTURES L Т Р С 22CS201 3 0 2 4 **OBJECTIVES:** The Course will enable learners to: To understand the concepts of List ADT. To learn linear data structures – stacks and queues ADTs. To understand and apply Tree data structures. To understand and apply Graph structures. To analyze sorting, searching and hashing algorithms. UNIT I LINEAR DATA STRUCTURES – LIST 15 Algorithm analysis - running time calculations - Abstract Data Types (ADTs) - List ADT array- based implementation – linked list implementation – singly linked lists - circularly linked lists - doubly-linked lists - applications of lists - Polynomial Manipulation - All operations (Insertion, Deletion, Merge, Traversal). List of Exercises: Array implementation of List ADTs. Linked list implementation of List ADTs. UNIT II LINEAR DATA STRUCTURES – STACKS, QUEUES 15 Stack ADT – Stack Model - Implementations: Array and Linked list - Applications - Balancing symbols - Evaluating arithmetic expressions - Conversion of Infix to postfix expression -Queue ADT – Queue Model - Implementations: Array and Linked list - applications of queues - Priority Queues – Binary Heap – Applications of Priority Queues. List of Exercises: Array implementation of Stack and Queue ADTs. Linked list implementation of Stack and Queue ADTs. Applications of List – Polynomial manipulations Applications of Stack – Infix to postfix conversion and expression evaluation. **NON LINEAR DATA STRUCTURES – TREES** UNIT III 15

Tree ADT – tree traversals - Binary Tree ADT – expression trees – applications of trees – binary search tree ADT– AVL Tree. List of Exercises:

Implementation of Binary Trees and operations of Binary Trees. Implementation of Binary Search Trees. • Implementation of Heaps using Priority Queues. • UNIT IV NON LINEAR DATA STRUCTURES - GRAPHS 15 Definition – Representation of Graph – Types of graph - Breadth-first traversal - Depth-first traversal – Topological Sort – Applications of graphs – BiConnectivity – Euler circuits. List of Exercises: • Graph representation and Traversal algorithms. UNIT V SEARCHING, SORTING AND HASHING TECHNIQUES 15 Searching- Linear Search - Binary Search - Sorting - Bubble sort - Selection sort - Insertion sort – Hashing - Hash Functions – Separate Chaining – Open Addressing – Rehashing – Extendible Hashing. List of Exercises: • Implement searching and sorting algorithms. **TOTAL: 75 PERIODS OUTCOMES:** Upon completion of the course, the students will be able to: **CO1:** Implement abstract data types for list. **CO2:** Solve real world problems using appropriate linear data structures. **CO3:** Apply appropriate tree data structures in problem solving. **CO4:** Implement appropriate Graph representations and solve real-world applications. **CO5:** Implement various searching and sorting algorithms. **TEXTBOOKS:** 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", 4th Edition, Pearson Education, 2014. 2. Sartaj Sahni, "Data Structures, Algorithms and Applications in C++", Silicon paper publications, 2004. **REFERENCES:** 1. Rajesh K. Shukla, "Data Structures using C and C++", Wiley India Publications, 2009. 2. Narasimha Karumanchi, "Data Structure and Algorithmic Thinking with Python: Data Structure and Algorithmic Puzzles", CareerMonk Publications, 2020. 3. Jean-Paul Tremblay and Paul Sorenson, "An Introduction to Data Structures with Application", McGraw-Hill, 2017. 4. Mark Allen Weiss, "Data Structures and Algorithm Analysis in Java", Third Edition, Pearson Education, 2012. 5. Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, "Fundamentals of Data Structures in C", Second Edition, University Press, 2008. 6. Ellis Horowitz, Sartaj Sahni, Dinesh P Mehta, "Fundamentals of Data Structures in C++", Second Edition, Silicon Press, 2007. 7. https://infyspringboard.onwingspan.com/web/en/app/ toc/lex_auth_01350157816505139210584/overview

22PH201	PHYSICS FOR COMPUTER SCIENCE AND	L	Т	Р	C	
	INFORMATION TECHNOLOGY	3	Δ	2	4	
	(Common to All Branches)		U			
OBJECTIVES:						
The Course will enable learners to:						

• Learn the fundamental concepts of Physics and apply this knowledge to scientific, engineering and technological problems.

Population of	f energy levels - Einstein's A and B coefficients derivation - Resonant ca	avity -		
Optical amplification (qualitative) - Semiconductor lasers: homojunction and heterojunction-				
Engineering applications of lasers in data storage (qualitative).				
Fibre optics:	Principle and propagation of light through optical fibre - V-number - Ty	pes of		
optical fibre	s (Material, refractive index and mode) - Losses in optical fibre - Fibre	optic		
communicat	ion - Fibre ontic sensors (pressure and displacement)	opui		
communicat	(The	ory -9)		
List of Evne	riments.	ny))		
1 Determ	ination of divergence of laser beam			
2 Determ	ination of acceptance angle and numerical aperture of an optical fibre			
2. Determ	(Laboratory 6)			
LINIT II	ELECTRON THEORIES OF MATERIALS	15		
	ELECTRON THEORIES OF MATERIALS	15		
Classical II	Windowsong Eremations Success and failures of CET. Effect of temperature			
conductivity	- wiedemann-Franz law - Success and failures of CF1- Effect of temperation	ure on		
Fermi functi	on- Density of energy states and average energy of electron at 0 K - Energy	bands		
in solids.				
	(Theory 0)			
List of Even	(Theory -9)			
List of Expe	riments			
1. Determin	nation of thermal conductivity of a bad conductor by Lee's disc method			
2. Measure	(Laboratory C)			
	(Laboratory -0)	1 -		
UNIT III	SEMICONDUCTOR PHYSICS	15		
Intrinsic Sen	iconductors – E-kdiagram-Direct and indirect band gap semiconductors - C	arrier		
concentratio	a in intrinsic semiconductors- Band gap determination-Extrinsic semicond	uctors		
- Carrier co	ncentration in n-type and p-type semiconductors -Electrical conductiv	ity of		
intrinsic and	extrinsic semiconductors - Variation of Fermi level with temperature and im	purity		
concentratio	n - Hall effect and its applications.	1		
		1		
List of Expe	(Theory -9)	1		
1. Band	riments (Theory -9)	r sj		
	eriments gap determination of intrinsic semiconductor. (Theory -9)	1		
2. Deter	eriments gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser	r y		
2. Deter	eriments gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborate	ory -6)		
2. Dete	eriments gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborate INTRODUCTION TO NANO DEVICES AND QUANTUM	ory -6) 15		
2. Deter UNIT IV	eriments gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborato INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING	ory -6) 15		
2. Deter UNIT IV Introduction	(Theory -9) approximation of intrinsic semiconductor. Traination of wavelength of semiconductor laser (Laborate INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of	<u>ory -6)</u> 15 Fermi		
2. Deter UNIT IV Introduction energy - Qu	(Theory -9) gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborator INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of antum confinement - Quantum structures - Density of states in quantum	pry -6) 15 Fermi well,		
2. Deter UNIT IV Introduction energy - Qu quantum win	(Theory -9) gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborator) INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of antum confinement - Quantum structures - Density of states in quantum e and quantum dot structures - Band gap of nanomaterial.	ory -6) 15 Fermi well,		
2. Deter UNIT IV Introduction energy - Qu quantum win Quantum co	(Theory -9) gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborator INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of antum confinement - Quantum structures - Density of states in quantum e and quantum dot structures - Band gap of nanomaterial. mputing: Quantum states - classical bits - quantum bits or qubits - CNOT	bry -6) 15 Fermi well, gate -		
2. Deter UNIT IV Introduction energy - Qu quantum win Quantum co multiple qu	(Theory -9) gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborator INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of antum confinement - Quantum structures - Density of states in quantum e and quantum dot structures - Band gap of nanomaterial. mputing: Quantum states - classical bits - quantum bits or qubits - CNOT its - Bloch sphere - quantum gates - advantages of quantum computing	pry -6) 15 Fermi well, gate - g over		
2. Deter UNIT IV Introduction energy - Qu quantum win Quantum co multiple qua classical com	(Theory -9) gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborator INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of antum confinement - Quantum structures - Density of states in quantum e and quantum dot structures - Band gap of nanomaterial. mputing: Quantum states - classical bits - quantum bits or qubits - CNOT bits - Bloch sphere - quantum gates - advantages of quantum computing uputing.	pry -6) 15 Fermi well, gate - g over		
2. Deter UNIT IV Introduction energy - Qu quantum win Quantum co multiple qua classical com	(Theory -9) gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborator INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of antum confinement - Quantum structures - Density of states in quantum e and quantum dot structures - Band gap of nanomaterial. mputing: Quantum states - classical bits - quantum bits or qubits - CNOT bits - Bloch sphere - quantum gates - advantages of quantum computing uputing. (Theorem	pry -6) 15 Fermi well, gate - g over ry - 9)		
2. Deter UNIT IV Introduction energy - Qu quantum win Quantum co multiple qub classical com	(Theory -9) gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborator INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of antum confinement - Quantum structures - Density of states in quantum e and quantum dot structures - Band gap of nanomaterial. mputing: Quantum states - classical bits - quantum bits or qubits - CNOT bits - Bloch sphere - quantum gates - advantages of quantum computing nputing. (Theorem	pry -6) 15 Fermi well, gate - g over ry - 9)		
2. Deter UNIT IV Introduction energy - Qu quantum win Quantum co multiple qu classical con List of Expen- 1. Synt	(Theory -9) gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborator INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of antum confinement - Quantum structures - Density of states in quantum e and quantum dot structures - Band gap of nanomaterial. mputing: Quantum states - classical bits - quantum bits or qubits - CNOT bits - Bloch sphere - quantum gates - advantages of quantum computing uputing. (Theorements) mesis of nanoparticles by sol-gel method	pry -6) 15 Fermi well, gate - g over ry - 9)		
2. Deter UNIT IV Introduction energy - Qu quantum win Quantum co multiple qua classical con List of Experi- 1. Synth 2. Deter	(Theory -9) gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborator INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of antum confinement - Quantum structures - Density of states in quantum e and quantum dot structures - Band gap of nanomaterial. mputing: Quantum states - classical bits - quantum bits or qubits - CNOT bits - Bloch sphere - quantum gates - advantages of quantum computing nputing. (Theorements) resis of nanoparticles by sol-gel method mination of particle size using laser source	nry -6) 15 Fermi well, gate - g over ry - 9)		
2. Deter UNIT IV Introduction energy - Qu quantum win Quantum co multiple qub classical con List of Expen- 1. Synth 2. Deter	(Theory -9) gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborator INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of antum confinement - Quantum structures - Density of states in quantum e and quantum dot structures - Band gap of nanomaterial. mputing: Quantum states - classical bits - quantum bits or qubits - CNOT bits - Bloch sphere - quantum gates - advantages of quantum computing nputing. (Theorem riments resis of nanoparticles by sol-gel method mination of particle size using laser source (Laborator	pry -6) 15 Fermi well, gate - g over ry - 9) ry - 6)		
2. Deter UNIT IV Introduction energy - Qu quantum win Quantum co multiple quantum classical con List of Expen- 1. Synth 2. Deter UNIT V	(Theory -9) gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborator INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of antum confinement - Quantum structures - Density of states in quantum e and quantum dot structures - Band gap of nanomaterial. mputing: Quantum states - classical bits - quantum bits or qubits - CNOT bits - Bloch sphere - quantum gates - advantages of quantum computing puting. (Theoremination of particles by sol-gel method mination of particle size using laser source (Laborator) MAGNETIC AND SUPERCONDUCTING MATERIALS	<u>ory -6)</u> 15 Fermi well, gate - g over ry - 9) ry - 6) 15		
2. Deter UNIT IV Introduction energy - Qu quantum win Quantum co multiple qub classical con List of Expen- 1. Synth 2. Deter UNIT V Introduction	(Theory -9) gap determination of intrinsic semiconductor. mination of wavelength of semiconductor laser (Laborator INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING to nanomaterial -Electron density in a bulk material - Size dependence of antum confinement - Quantum structures - Density of states in quantum e and quantum dot structures - Band gap of nanomaterial. mputing: Quantum states - classical bits - quantum bits or qubits - CNOT bits - Bloch sphere - quantum gates - advantages of quantum computing puting. (Theorements) resis of nanoparticles by sol-gel method mination of particle size using laser source (Laborator) MAGNETIC AND SUPERCONDUCTING MATERIALS - Bohr magneton -magnetic dipole moment - origin of magnetic moments -	$\frac{\text{pry -6}}{15}$ Fermi well, gate - g over ry - 9) $\frac{\text{ry - 6}}{15}$ types		

Make the students enrich basic knowledge in electronics and quantum concepts and apply the same in computing fields.

ferrima	agnetism - magnetic principle in computer data storage - Magnetic hard disc (GMR
sensor,) - Introduction to spintromics.
Superc	onducting materials – properties, types of superconductors, applications – SQUID and
MAGL	LEV trains - superconducting qubits in quantum computing.
T • 4 4	(Incory -9)
LIST OI	Experiments
1.	Determination of nysteresis loss using B-H loop
2.	Determination of magnetic susceptibility of a paramagnetic liquid using Quincke's
	apparatus
	(Laboratory, 6)
	(Laboratory -0)
	IUIAL: /5 PERIODS
	DUTCOMES:
Upo	n completion of the course, the students will be able to:
CO	1: Discuss the basic principles of working of laser and their applications in fibre optic
	communication
CO	2: Summarize the classical and quantum electron theories and energy band structures
CO	3: Describe the conductivity in intrinsic and extrinsic semiconductors and importance
	of Hall effect measurements
CO	4. Associate the properties of panescale materials and their applications in quantum
CO	• Associate the properties of nanoscale materials and then applications in quantum
~~~	computing
CO	5: Interpret the properties of magnetic and superconducting materials and their
	applications in computer data storage
TEXT	BOOKS:
1.	S.O. Kasap, Principles of Electronic Materials and Devices, McGraw-Hill Education
	(Indian Edition) 2020.
2.	Jasprit Singh, Semiconductor Devices: Basic Principles, Wiley (Indian Edition)
	2007.
3.	Parag K Lala, Quantum Computing: A Beginner's Introduction, McGraw-Hill
	Education (Indian Edition) 2020.
т	
	EFERENCES:
1.	<b>R.P. Feynman</b> , The Feynman Lectures on Physics - Vol. II, The New Millennium
2	Edition, 2012.
	in a national state of the second state of the
2.	<b>WI.A. Wanab</b> , Solid State Physics, 3 th Edition, Narosa Publishing House Pvt. Ltd.,
2.	2015.
2. 3.	<ul> <li>WI.A. wanab, Solid State Physics, 3rd Edition, Narosa Publishing House Pvt. Ltd., 2015.</li> <li>B.Rogers, J. Adams and S.Pennathur, Nanotechnology: Understanding Small</li> </ul>
2. 3.	<ul> <li>W.A. wanab, Solid State Physics, 3rd Edition, Narosa Publishing House Pvt. Ltd., 2015.</li> <li>B.Rogers, J. Adams and S.Pennathur, Nanotechnology: Understanding Small System, CRC Press, 2014.</li> </ul>
2. 3. 4.	<ul> <li>W.A. wanab, Solid State Physics, 3^{re} Edition, Narosa Publishing House Pvt. Ltd., 2015.</li> <li>B.Rogers, J. Adams and S.Pennathur, Nanotechnology: Understanding Small System, CRC Press, 2014.</li> <li>C.P. Williams, Explorations in Quantum Computing, Springer-Verlag London, 2011.</li> </ul>
2. 3. 4. 5.	<ul> <li>NI.A. wanab, Solid State Physics, 3^{re} Edition, Narosa Publishing House Pvt. Ltd., 2015.</li> <li>B.Rogers, J. Adams and S.Pennathur, Nanotechnology: Understanding Small System, CRC Press, 2014.</li> <li>C.P. Williams, Explorations in Quantum Computing, Springer-Verlag London, 2011.</li> <li>Wilson J.D. and Hernandez C.A., Physics Laboratory Experiments, Houghton</li> </ul>
2. 3. 4. 5.	<ul> <li>WI.A. Wanab, Solid State Physics, 3^{re} Edition, Narosa Publishing House Pvt. Ltd., 2015.</li> <li>B.Rogers, J. Adams and S.Pennathur, Nanotechnology: Understanding Small System, CRC Press, 2014.</li> <li>C.P. Williams, Explorations in Quantum Computing, Springer-Verlag London, 2011.</li> <li>Wilson J.D. and Hernandez C.A., Physics Laboratory Experiments, Houghton Mifflin Company, New York 2005.</li> </ul>
2. 3. 4. 5. 6.	<ul> <li>N.A. wanab, Solid State Physics, 3^{re} Edition, Narosa Publishing House Pvt. Ltd., 2015.</li> <li>B.Rogers, J. Adams and S.Pennathur, Nanotechnology: Understanding Small System, CRC Press, 2014.</li> <li>C.P. Williams, Explorations in Quantum Computing, Springer-Verlag London, 2011.</li> <li>Wilson J.D. and Hernandez C.A., Physics Laboratory Experiments, Houghton Mifflin Company, New York 2005.</li> <li>Department of Physics, Physics laboratory manual, R.M.K. Group of Institutions.</li> </ul>

22HS101	PROFESSIONALCOMMUNICATION	L	Т	Р	С	
	(Common to All Branches)	2	0	2	3	
OBJECTIVES:						
The Course will enable learners to:						

	Strongthan basis reading and writing skills	
•		
•	Comprehend listening contexts competently.	
•	Inculcate reading habit and develop effective reading skills.	
•	Improve active and passive vocabulary.	
•	Acquire speech clarity with right pronunciation.	
•	Develop vocabulary of a general kind and enhance grammatical accuracy.	
•	Imbibe Content and Language Integrated Learning(CLIL).	
	UNIT I FORMAL AND INFORMAL COMMUNICATION	12
]	Listening: Short Texts, Short Formal and Informal Conversations	
5	Speaking: Self Introduction, Exchanging Personal Information	
]	Reading: Practice in Skimming, Scanninga nd Predicting, Reading Comprehension	
	Writing: Free Writing. Hints Development	
	<b>Frammar:</b> Parts of Speech. Prepositions.	
	Vocabulary: Compound Nouns, Technical Words.	
		(Theory6)
1	Familiarization of VowelSounds-Monophthongs DiphthongsandConsonantSounds	(111001)0)
2	ListeningtoFormalConversations inBritishandAmericanAccents	
3	GuidedWriting	
5		aboratory6)
	UNIT II CRAMMAR AND LANCUACE DEVELOPMENT	12
т;	onn in GRAMMAR AND LANGUAGE DEVELOT MENT	14
	astring: Cheminginformation of an around living Creatings Taking lagua	
b b	eaking: Sharinginiorinationorapersonaiking-Greetings-Takingleave.	
ĸ	aung: Shortcomprehensionpassages-Pre-readingandPost-	
rea	ang(multiplechoicequestionsshortquestions/openandcloseendedquestions)	
	riting:Instructions, Recommendations, Checklists	
G	ammar: I enses, Framing Wh & Y es or No questions	
VC	cabulary:NumericalAdjectives,Collocations	
		(Theory6)
	1. CommunicationEtiquettes	
4	2. Self-IntroductionusingSWOTAnalysis	
		aboratory6)
	UNIT III BASICTECHNICALWRITINGANDSTUDYSKILLS	12
Li	stening:Listening tolongertextsandfilling up thetables	
Sp	eaking: Asking about routine actions and expressing opinions	
Re	ading:Shorttexts (ClozeTest)	
W	riting:Formalletters,E-mailwriting,InterpretationofChartsandGraphs	
Gı	ammar:CauseandEffectexpressions,ConditionalClauses	
Vo	cabulary:Oftenmisspelledandconfusing words	
		(Theory6)
M	echanicsofReadingSkills	
Ne	wsReading-ClozeTests	
	C (L	aboratory6)
	UNIT IV GROUPDISCUSSIONAND JOBAPPLICATIONS	12
Li	stening:Listeningtorecordeddialoguesofconversationsandcompletingexercisesbased on them	
Sn	eaking:DiscussiononSocialissues.	
Re	ading:Readingtext frommagazines	
W	riting: PurposeExpressions LetterofApplication MinutesofMeeting	
G	<b>ammar:</b> ModalVerbs, Subject-Verbagreement	
V	cabulary:SequenceWords	
	Jisoquonoo II orab	(Theory6)
1	Group Presentation, Group Discussion: Do's and Don'ts of Group Discussion	(Theoryo)
1.		
<i>'</i> )	Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors	
2.	Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors	

	(Lab	ooratory6)
UNIT V	ARTOFREPORTING	12
Listening: Liste	ening to TED talks	
Speaking: Deba	ate & Presentations	
Reading:Biogra	phies	
Writing:Definit	ions(Singleline&Extended),ReportWriting(Industrialvisit,AccidentandFeasibilityr	eports)
Grammar:Repo	ortedspeech	
Vocabulary:Ve	rbalAnalogies (Theory6)	
1. Writingbased	onlisteningto academic lecturesanddiscussions	
2. Leadershipski	ills,Negotiationskills	
3. Mechanicsof	ReportWriting	
	(Lat	ooratory6)
LISTOFPRO.	JECTS	
1. Createapodo	astonatopicthatwillbeinterestingtocollegestudents	
2. ReadandRev	view(Movie/Book/TechnicalArticle)	
3. Presentation	onSocialIssues	
4. Submitarepo	orton"GlobalEnglish:Astudy"	
	TOTAL: 60 P	PERIODS
OUTCOM		
Upon comple	tion of the course, the students will be able to:	
CO1:Comprehe	ndconversationsandshorttalksdeliveredinEnglish	
CO2:Participate	efficiently in informal conversations and develop an awareness of these lf and apply well-	
definedtechniqu	es and a second s	
CO3: Read artic	les of a general kind in magazines and newspapers efficiently	
CO4:Write shor	tgeneralessays, personalletters and E-mails in English CO5: Develop vocabulary of a	
general kind by	enriching reading skills	
<b>TEXTBOOKS</b> :		
1. Kumar,	SureshE,&Sreehari,P. CommunicativeEnglish.OrientBlackSwan,2007.	
2. Richard	s, JackC.InterchangeStudents'Book-2NewDelhi:CUP,2015.	
REFERE	NCES:	
1. Bailey, St	ephen. Academic Writing: A practical guide for students. New York:Rutledge,20	11.
2. Dhanavel	,SP.English and SoftSkills,VolumeTwo,OrientBlackSwan.	
3. Elbow,Pe	ter. Writing Without Teachers. London: Oxford University Press, 1973.	
4. Larsen,K	ristine. StephenHawking: ABiography, Greenwood: PublishingGroup, 2005.	
5. Redston,	Chris & Gillies Cunningham. Face2Face (Pre-intermediate Students'Book	
&Workbo	ok)Cambridge UniversityPress,New Delhi:2005.	
6. Lewis,Noi	man.WordPowerMadeEasy,LatestEdition:PenguinRandomHouseIndia:2015	
	அற்வே ஆக்கய	

WER DEFEDENCES.	
1. Basics of Business Communication	
https://infyspringboard.onwingspan.com/en/app/toc/lex_auth_0126887680836321283	30
8_shared/overview	
2. communicating to	
Succeedhttps://infyspringboard.onwingspan.com/en/app/toc/lex_auth_012686653619	1
75424640_shared/overview	
3.	
BusinessEnglishhttps://infyspringboard.onwingspan.com/en/app/toc/lex_auth_01268322749	8151936279_s
hared/overviewhttps://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01326770	)836790476857
3/overview(labsupport)	
4.	
BusinessWritinghttps://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012689	9477
60100966433 shared/overview	
5. Email	
Etiquetteshttps://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01329462386	55561088
17682 shared/overview	
6. Email Writing	
Skillshttps://infvspringboard.onwingspan.com/en/app/toc/lex_auth_01268954363013529666_s	s
hared/overview	5
7 Time	
Managementhttps://infvspringboard.onwingspan.com/en/app/toc/lex_auth_012985921210	73
6640721 shared/overview	15
8 Understanding Body	
Languagehttps://infvenringboard.onvingenan.com/en/app/toc/lev_auth_012070737651/45	3760
24680 shared/overview	<u>, 700</u>
ONLINEDESOLIDCES	
UNLINEREDUKCED:	
nups://infyspringboard.onwingspan.com/web/en/page/nome	
	ł

2205202	JAVA PROGRAMMING	L	Т	Р	С
2205202		3	0	2	4
OBJECT	IVES:				

#### The Course will enable learners to:

- To explain object oriented programming concepts and fundamentals of Java •
- To apply the principles of packages, interfaces and exceptions
- To develop a Java application with I/O streams, threads and generic programming •
- To build applications using strings and collections.
- To apply the JDBC concepts •

#### JAVA FUNDAMENTALS UNIT I

15 An Overview of Java - Data Types, Variables, and Arrays - Operators - Control Statements -Class Fundamentals - Declaring objects - Methods - Constructors - this keyword -Overloading methods - Overloading constructors - Access Control - Static - Final

#### List of Exercises:

1. Develop a Java application to generate Electricity bill. You must use one super class called EB Bill and must have two sub classes namely Domestic Bill and Commercial Bill. Create a class with the following members: Consumer no., consumer name, previous month reading, current month reading, type of EB connection (i.e domestic or commercial). Compute the bill amount using the following tariff

If the type of the EB connection is domestic, calculate the amount to be paid as follows: First 100 units - Rs. 1 per unit

101-200 units - Rs. 2.50 per unit 201 -500 units - Rs. 4 per unit

> 501 units - Rs. 6 per unit

If the type of the EB connection is commercial, calculate the amount to be paid as follows: First 100 units - Rs. 2 per unit

101-200 units - Rs. 4.50 per unit 201 -500 units - Rs. 6 per unit

> 501 units - Rs. 7 per unit

- 2. Arrays Manipulations: (Use Methods for implementing these in a Class)
- a. Find kth smallest element in an unsorted array
- b. Find the sub array with given sum
- c. Matrix manipulations Addition, Subtraction, Multiplication
- d. Remove duplicate elements in an Array
- e. Accept an integer value N and print the Nth digit in the integer sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and so on till infinity.

Example: The 11th digit in the sequence 12345678910111213.... is 0.

#### UNIT II INHERITANCE, INTERFACES AND EXCEPTION HANDLING 15

Inheritance: Inheritance basics, Using super, Method Overriding, Using Abstract Classes, Using final with Inheritance - Package and Interfaces: Packages, Packages and member access, Importing Packages, Interfaces, Static Methods in an Interface – Exception Handling: Exception-Handling Fundamentals, Exception Types, Uncaught Exceptions, Using try and catch, Multiple catch Clauses, Nested try Statements, throw, throws, finally, Java's Built-in Exceptions.

#### List of Exercises:

1. Develop a Java application to implement currency converter (Dollar to INR, EURO to INR, Yen to INR and vice versa), distance converter (meter to KM, miles to KM and vice versa), time converter (hours to minutes, seconds and vice versa) using packages.

2. Develop a Java application with Employee class with Emp_name, Emp_id, Address, Mail id Mabile no as members. Inherit the classes, Programmer, Assistant Professor

Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant Professor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary. 3. Design a Java interface for ADT Stack. Implement this interface using array and built-in

classes. Provide necessary exception handling in both the implementations.

4. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named print Area(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains the methods print Area () that prints the area of the given shape and Numberofsides() that prints the number of sides of the given shape.

5. Write a Java program to apply built-in and user defined exceptions.

UNIT III MULTITHREADING, I/O AND GENERIC PROGRAMMING

Multithreaded Programming: Creating a Thread, Thread Priorities, Synchronization, Interthread Communication – I/O: I/O Basics, Reading Console Input, Writing Console Output, Reading and Writing Files – Generics: Introduction, Generic class, Bounded Types, Generic Methods, Generic Interfaces, Generic Restrictions.

15

15

#### List of Exercises:

1.Write a Java program to read and copy the content of one file to other by handling all file related exceptions.

#### UNIT IV STRING HANDLING AND COLLECTIONS

Lambda Expressions - String Handling – Collections: The Collection Interfaces, The Collection Classes – Iterator – Map - Regular Expression Processing.

#### List of Exercises:

1.String Manipulation:

- a. Reversing a set of words and count the frequency of each letter in the string.
- b. Pattern Recognition Find the number of patterns of form 1[0]1 where [0] represents any number of zeroes (minimum requirement is one 0) there should not be any other character except 0 in the [0] sequence in a given binary string.
- c. Remove all the occurrences of string S2 in string S1 and print the remaining.
- d. Find the longest repeating sequence in a string
- e. Print the number of unique string values that can be formed by rearranging the letters in the string S.
- 2. Write a Java program that correctly implements producer consumer problem using the concept of inter thread communication.
- 3. Collections:
- a. Write a program to perform string operations using ArrayList. Write functions for the following
- i. Append add at end
- ii. Insert add at particular index

iii. Search

- iv. List all string starts with given letter
- b. Find the frequency of words in a given text.

#### UNIT V JDBC CONNECTIVITY

JDBC – DataSource, Configurations, Connection, Connection Pools, Driver Types, ResultSet, Prepared Statement, Named Parameter, Embedded SQL (Insert, Update, Delete, Join, union etc), ResultSet Navigation, Connection Close and Clean up.

#### List of Exercises:

• Mini Project (using JDBC)

#### **TOTAL: 75 PERIODS**

15

#### **OUTCOMES:**

#### Upon completion of the course, the students will be able to:

**CO1:** Understand the object oriented programming concepts and fundamentals of Java.

**CO2:** Develop Java programs with the packages, interfaces and exceptions.

- CO3: Build Java applications with I/O streams, threads and generics programming.
- CO4: Apply strings and collections in developing applications.

**CO5:** Implement the concepts of JDBC.

#### **TEXTBOOKS:**

1. Herbert Schildt, "Java: The Complete Reference", 11th Edition, McGraw Hill Education, 2019.

#### **REFERENCES:**

- 1. Cay S. Horstmann, Gary Cornell, "Core Java Volume I Fundamentals", 11th Edition, Prentice Hall, 2019.
- 2. Paul Deitel, Harvey Deitel, Java SE 8 for programmers, 3rd Edition, Pearson, 2015.
- 3. Steven Holzner, Java 2 Black book, Dream tech press, 2011.
- 4. Timothy Budd, Understanding Object-oriented programming with Java, Third Edition, Pearson Education, 2008.
- 5. https://infyspringboard.onwingspan.com/web/en/app/ toc/lex_29959473947367270000_shared/overview

22IT201

#### DATABASE MANAGEMENT SYSTEM

L T P C
	3	0	2	4
OBJECTIVES:				
The Course will enable learners to:				
• To understand the basic concepts of Data modeling and Database Systems.				
• To understand SQL and effective relational database design concepts.				
• To learn relational algebra, calculus and normalization.				
• To know the fundamental concepts of transaction processing, concurrency co	ontrol			
techniques, recovery procedure and data storage techniques.				
To understand query processing, efficient data querying and advanced database	ases.			
UNIT I DATABASE CONCEPTS				15
Concept of Database and Overview of DBMS - Characteristics of databases	- Da	ta I	Mod	lels,
Schemas and Instances - Three-Schema Architecture - Database Languages	and I	nter	tace	es -
Introductions to data models types - ER Model- ER Diagrams - Enhanced ER N	Vlodel	- re	educ	eing
ER to table Applications: ER model of University Database Application – Rel	ationa	u D	atab	base
Design by ER- and EER-to-Relational Mapping.				
List of Evercises				
1 Data Definition Commands Data Manipulation Commands for inserting de	eletin	יוו כ	ndat	ting
and retrieving Tables and Transaction Control statements	cicting	, u	puu	
UNIT II STRUCTURED OUERY LANGUAGE				15
SOL Data Definition and Data Types – Constraints – Oueries – INSERT, UPDAT	TE. an	d D	ELE	ETE
in SQL - Views - Integrity Procedures, Functions, Cursor and Triggers - E	mbed	ded	SQ	L -
Dynamic SQL.				
List of Exercises:				
1. Database Querying – Simple queries, Nested queries, Sub queries and Joins				
2. Views, Sequences, Synonyms				
3. Database Programming: Implicit and Explicit Cursors				
UNIT III RELATIONAL ALGEBRA, CALCULUS AND NORMALIZAT	LION	<u> </u>		15
Relational Algebra – Operations - Domain Relational Calculus- Tuple Relat	ional	Cal	culu	1S -
Fundamental operations. Relational Database Design Europtional Dependency Normalization (1NE		7 21		and
Relational Database Design - Functional Dependency – Normalization (INF RCNE) Multivalued Dependency and 4NE Joint Dependencies and 5NE D	r, $2ini$	-31	NF zotic	and
BCINI') – Multivalued Dependency and 4NI' – Joint Dependencies and JNI' - De	2-11011	liall	Zati	л.
List of Exercises:				
1. Procedures and Functions				
2. Triggers				
TRANSACTIONS, CONCURRENCY CONTROL AND DATA				1.5
UNIT IV STORAGE U/06/				15
Transaction Concepts - ACID Properties - Schedules based on Recoverability,	Seria	liza	bilit	ty –
Concurrency Control - Need for Concurrency - Locking Protocols - Two I	Phase	Loc	ckin	g –
Transaction Recovery – Concepts – Deferred Update – Immediate Update.				
Organization of Records in Files – Unordered, Ordered – Hashing Techniques –	RAID	) - (	Drde	ered
Indexes – Multilevel Indexes - B+ tree Index Files – B tree Index Files.				
List of Exercises:				
2. Detabase Design using EP modeling, normalization and Implementation for a	nuon	nlia	otio	n
2. Database Design using EX modeling, normalization and implementation for a 3 Database Connectivity with Front End Tools	шу ар	pric	au	11
UNIT V OUERY OPTIMIZATION AND ADVANCED DATARASES				15
Ouery Processing Overview – Algorithms for SELECT and IOIN operations – $O_{1}$	ierv o	ntim	nizat	tion
using Heuristics.				
26				

Distributed Database Concepts – Design – Concurrency Control and Recovery – NOSQL Systems – Document-Based NOSQL Systems and MongoDB.

## List of Exercises:

1. Case Study using real life database applications anyone from the following list

- a) Inventory Management for a EMart Grocery Shop
- b) Society Financial Management
- c) Cop Friendly App Eseva
- d) Property Management eMall
- e) Star Small and Medium Banking and Finance

• Build Entity Model diagram. The diagram should align with the business and functional goals stated in the application.

• Apply Normalization rules in designing the tables in scope.

• Prepared applicable views, triggers (for auditing purposes), functions for enabling enterprise grade features.

• Build PL SQL / Stored Procedures for Complex Functionalities, ex EOD Batch Processing for calculating the EMI for Gold Loan for each eligible Customer.

ENGINEEDING GOLLEGE

• Ability to showcase ACID Properties with sample queries with appropriate settings

## **TOTAL: 75 PERIODS**

## **OUTCOMES:**

# Upon completion of the course, the students will be able to:

அறிவே

**CO1:** Map ER model to Relational model to perform database design effectively.

CO2: Implement SQL and effective relational database design concepts.

CO3: Apply relational algebra, calculus and normalization techniques in database design.

**CO4:** Understand the concepts of transaction processing, concurrency control, recovery procedure and data storage techniques.

**CO5:** Apply query optimization techniques and understand advanced databases.

# **TEXTBOOKS:**

- 1. Elmasri R. and S. Navathe, "Fundamentals of Database Systems", Pearson Education, 7th Edition, 2016.
- 2. Abraham Silberschatz, Henry F.Korth, "Database System Concepts", Tata McGraw Hill , 7th Edition, 2021.

அக்கம்

## **REFERENCES:**

- 1. Elmasri R. and S. Navathe, Database Systems: Models, Languages, Design and Application Programming, Pearson Education, 2013.Raghu Ramakrishnan, Gehrke "Database Management Systems", MCGraw Hill, 3rd Edition 2014.
- 2. Plunkett T., B. Macdonald, "Oracle Big Data Hand Book", McGraw Hill, First Edition, 2013
- 3. Gupta G K , "Database Management Systems" , Tata McGraw Hill Education Private Limited, New Delhi, 2011.
- 4. C. J. Date, A.Kannan, S. Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2015.
- 5. Maqsood Alam, Aalok Muley, Chaitanya Kadaru, Ashok Joshi, Oracle NoSQL Database: Real-Time Big Data Management for the Enterprise, McGraw Hill Professional, 2013.
- 6. Thomas Connolly, Carolyn Begg, "Database Systems: A Practical Approach to Design, Implementation and Management", Pearson, 6th Edition, 2015.
- 7. Database Management System Part 1

https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01275806667282022456_shared/overview

- 8. Database Management System Part 2
  - https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0127673005629194 241_shared/overview
- 9. Online Resources:

https://infyspringboard.onwingspan.com/web/en/page/home

22GE211	PRODUCT DEVELOPMENT LAB - II	L	Т	Р	С
	(Common to All Branches)	0	0	2	1

The students may be grouped into a batch of strength 3 or 4 to work under a project supervisor. The student batches should study the device/system/component and will do literature review to develop prototype idea. Further at the end of the semester they will make a final presentation to exhibit the conceptual design skills and the process to develop a product.

## **OBJECTIVES:**

# The Course will enable learners to:

- Use the innovative design methodology to articulate the product concepts.
- Summarize the requisite Engineering Principles for transforming concepts into products.
- Conduct basic tests to extract the qualitative and quantitative performance factors.

# List of Exercise/Experiments

- 1. Study of Basic Engineering Design Concepts.
- 2. Conduct a literature survey on the implementation of the design concepts.
- 3. Prepare the design concepts for an identified literature gap.
- 4. Present the Product Idea Presentation Phase II.

# **OUTCOMES:**

# Upon completion of the course, the students will be able to:

**CO1:** Understand the working and capacity of various engineering systems.

**CO2:** Infer the outcomes in the product development process.

**CO3:** Perform basic engineering and material characterization tests.

**CO4:** Demonstrate the ability to provide conceptual design strategies for a product.

**CO5:** Implement the Science, Engineering, Technology and Mathematics (STEM) for product design.

TOTAL: 30 PERIODS

	ENVIRONMENTAL SCIENCE AND	L	Т	P	С
22/11/02	SUSTAINABILITY				
22CH102	(Non Credit)	2	0	0	0
OBJE	CTIVES:		•	•	
The Course	will enable learners to:				
• To gain k	nowledge of the environment and various natural resourc	es.			
• To ident	ify the Scientific and Technological solutions to po	llutio	n iss	ues	and waste
managen	nent	nuno		aes	und wubte
<ul> <li>To under</li> </ul>	stand the significance of the conservation of biodiversity				
• To recog	nize the needs and henefits of sustainability and its manage	emen	t		
• To recog	reband the effects of human population on the environment	,emen at	ι.		
	tenend the effects of numain population on the environment	11.			
UNIT I	NATURAL RESOURCES				7
Definition. s	cope and importance of environment – need for public a	aware	ness.	Intr	oduction to
natural resou	irces - Types - Forest resources: Use and over-exploita	tion	defoi	estat	ion and its
impacts For	d resources: effects of modern agriculture organic fai	rmino	Re	newa	ble energy
sources - Sol	ar Wind Geothermal Tidal OTE and Biomass		,		lore energy
Field activit	v -Tree plantation				
UNIT II	POLLUTION AND WASTE MANAGEMENT				7
Pollution -	Definition –causes effects and control measures of (a)	) Air	polli	ition	(b) Water
pollution (c)	Soil pollution (d) Noise pollution (e) Nuclear hazard	s - n	uclea	r acc	cidents and
holocaust -R	ole of an individual in prevention of pollution –Case studi	es.			
Waste mana	gement- Municipal solid wastes, e- waste, plastic waste.				
Field study	- Solid waste management of the institution				
I leia staay					
UNIT III	<b>BIODIVERSITY AND ITS CONSERVATION</b>				6
Biodiversity	types - values of biodiversity, India as a mega-diver	sity n	ation	– h	ot-spots of
biodiversity	- threats to biodiversity - endangered and endemic specie	es, ext	inct,	rare,	vulnerable
species of In	dia – conservation of biodiversity: In-situ and ex-situ met	hod.			
Field study -	- Biodiversity of the institution				
<b>UNIT IV</b>	SUSTAINABILITY AND MANAGEMENT				5
Sustainabilit	y-concept, needs and challenges-Circular economy -Sustai	nable	Deve	elopr	nent Goals-
Concept of C	arbon footprint, Environmental Impact Assessment, Clean	Deve	lopm	ent N	Aechanism,
solutions.					
Field study -	- Carbon footprint of the institution				
UNIT V	HUMAN POPULATION	N			5
Introduction	- Population growth, variation among nations, population	explo	sion,	Envi	ronment
and human h	ealth - endemic/epidemic/pandemic- Role of information	techi	nolog	y in	
environment	and human health.				
Case Study	– Pandemics of 21 st century				
		ТО	TAL	.: 30	PERIODS
OUTC	OMES:				
Upon compl	etion of the course, the students will be able to:				
CO1: Invest	gate and use conservational practices to protect natural re	sourc	es.		
CO2: Identif	y the causes of pollutants and illustrate suitable methods	for po	llutic	on ab	atement.
CO3: Adapt	the values of high varies and its conservation methods	*			
COC. Humpt	the values of blourversity and its conservation methods.				
CO4: Recog	nize suitable sustainable development practices and apply	it in (	day-t	o-da	y life.
CO4: Recog CO5: Assess	nize suitable sustainable development practices and apply the impacts of human population and suggest suitable so	it in olution	day-t s.	o-da	y life.
CO4: Recog CO5: Assess	nize suitable sustainable development practices and apply the impacts of human population and suggest suitable so	it in olution	day-t s.	o-da	y life.

## **TEXTBOOKS:**

- 1. Anubha Kaushik and C.P. Kaushik, "Perspectives in environmental studies", New Age International Publishers, 2nd edition, 2021.
- 2. Benny Joseph, Environmental Science and Engineering, Tata McGraw-Hill, New Delhi, 2017.
- 3. Gilbert M.Masters, Introduction to Environmental Engineering and Science, 3rd edition, Pearson Education, 2014.
- 4. Erach Bharuch, Textbook of Environmental Studies for Undergraduate Courses, Third Edition, Universities Press(I) Pvt. Ltd., Hyderabad, 2021.

## **REFERENCES:**

- 1. William P.Cunningham& Mary Ann Cunningham Environmental Science: A Global Concern, McGraw Hill, 14th edition, 2017.
- 2. Rajagopalan, R, Environmental Studies-From Crisis to Cure, Oxford University Press, 2015.
- 3. G. Tyler Miller and Scott E. Spoolman, —Environmental Science, Cengage Learning India Pvt, Ltd., Delhi, 2014.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall, 2012.
- 5. Bradley, A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning, 2015.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006 and subsequent amendments, 2022

22CE101	Heritage of Tamils	L	Т	Р	С
22GE101	(Common to All Branches)	Q /	0	0	1
OBJE	CTIVES:	$\bigcirc$			
The cour	rse is designed to	$\leq$			
•	Recognize Tamil literature and its significance	e in Tar	nil cultu	re.	
•	Introduce the Tamils' rich artistic and cultural	legacy.			
•	Familiarize the different types of folk and mar	tial arts	s that are	unique	to Tamil
	Nadu.		*		
•	Acquaint the concept of Thinai in Tamil literat	ture and	d culture		
•	Comprehend the significance of Tamil in deve	loping	Indian c	ulture.	
UNIT I LANGUAGE AND LITERATURE					3
Language Families in India - Dravidian Languages – Tamil as a Classical Language - Classical					
Literature in	Tamil - Secular Nature of Sangam Literatu	re – D	istributi	ve Justi	ce in Sangam
Literature -	Management Principles in Thirukural - Tami	1 Epics	and In	npact of	Buddhism &
Jainism in T	amil Land - Bakthi Literature Azhwars and N	ayanma	ars - For	rms of r	ninor Poetry –
Developmen	t of Modern literature in Tamil - Contribution of	of Bhar	athiyar a	ind Bha	rathidhasan.
UNIT II	HERITAGE - ROCK ART PAINTINGS T	'O MO	DERN A	ART	3
	– SCULPTURE				5
Hero stone to	o modern sculpture - Bronze icons - Tribes and	their 1	handicra	fts - Ar	t of temple car
making Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari,					
Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of					
Temples in S	ocial and Economic Life of Tamils.				
UNIT III	FOLK AND MARTIAL ARTS				3
Therukoothu	, Karagattam, VilluPattu, KaniyanKoot	hu, C	Dyillattar	n, Le	atherpuppetry,
Silambattam	, Valari, Tiger dance - Sports and Games of Ta	mils.			
UNIT IV	THINAI CONCEPT OF TAMILS				3
	40				

Flora and F	auna of Tamils & Aham and Puram Concept from Tholkappiyam	and Sangam
Literature -	Aram Concept of Tamils - Education and Literacy during Sangam	Age - Ancient
Cities and Po	orts of Sangam Age - Export and Import during Sangam Age - Oversea	as Conquest of
Cholas.	11	
UNIT V	CONTRIBUTION OF TAMILS TO INDIAN NATIONAL	3
	MOVEMENT AND INDIAN CULTURE	
Contribution	of Tamils to Indian Freedom Struggle – The Cultural Influence of T	amils over the
other parts o	f India – Self-Respect Movement – Role of Siddha Medicine in Indige	enous Systems
of Medicine	– Inscriptions & Manuscripts – Print History of Tamil Books.	
	TOTAL	:15PERIODS
OUTC	OMES:	
Uponcom	pletionofthecourse, thestudentswill beable to:	
CO1:State	the role of Tamil literature in shaping Tamil Cultural roots.	
CO2: Exp	ress the cultural and religious significance of Tamil art and sculptures.	
CO3: Iden	tify and describe the techniques of folk and martial arts.	
CO4: Clas	sify the role of Thinai concept in Tamil culture and literature.	
CO5: Con	pare the idea of cultural and intellectual contributions of Tamils.	
TEXT-CUM தமிழ 3. தமிழ 4. கண கீழ 5. வெ	<b>1-REFERENCE BOOKS:</b> pக வரலாறு – மக்களும் பண்பாடும் – கே.கே. பிள்ளை (வெஎ pநாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்). ினித் தமிழ் – முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்). டி – வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் ளியீடு)	ரியீடு: துறை
6. Gun 7. Socia (in pr 8. Socia	ருநை – ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு) Il Life of Tamils (Dr.K.K. Pillay) A joint publication of TNTB & ESC int) Il Life of the Tamils - The Classical Period (Dr.S. Singaravelu) (Publis	2 and RMRL –
9. Histo (Pub)	rical Heritage of the Tamils (Dr.S.V.Subaramanian, Dr.K.D.Thirunav lished by: International Institute of Tamil Studies).	ukkarasu)
10. The Inter	Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Pulnational Institute of Tamil Studies.)	blished by:
11. Keela Depa Corp	adi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly F rtment of Archaeology & Tamil Nadu Text Book and Educational Ser oration, Tamil Nadu)	Published by: vices
12. Studi (Pub	es in the History of India with Special Reference to Tamil Nadu (Dr. I lished by: The Author)	K. K. Pillay)
13. Poru Text	nai Civilization (Jointly Published by: Department of Archaeology & T Book and Educational Services Corporation, Tamil Nadu)	Гamil Nadu
14. Journ Refe	ey of Civilization Indus to Vaigai (R. Balakrishnan) (Published by: R. rence Book	MRL) –

Common to CSE,IT & AIML)       3       1       0       4         OBJECTIVES:       The course is designed to:       •       Describe the arguments using connectives and rules of inference.       •         •       Introduce the basic concept of counting and generating functions.       •       Define the graphs and it's models.         •       Untoduce the basic concept of group theory, lattices and Boolean algebra.       15         Propositional logic - Propositional equivalences - Predicates and quantifiers - Nested quantifiers - Rules of inference - Introduction to proofs - Proof methods and strategy.       15         Mathematical induction - Strong induction and well ordering The basics of counting - The pigeonhole principle - Permutations, and combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.       15         Orghs and graph isomorphism - Connectivity - Euler and Hamilton paths.       15         Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Boolean algebra.       15         OUTCOMES:       Upon completion of the course, the students will be able to:       15         CO3: Determine Euler's path and Hamilton paths.       CO3: Determine Euler's path and Hamilton, 2021.         CO3: Determine	22MA 301 DISCRETE MATHEMATICS L					С
DBJECTIVES:         The course is designed to:         • Describe the arguments using connectives and rules of inference.         • Introduce the basic concept of group theory, lattices and Boolean algebra.         • Understand the concept of group theory, lattices and Boolean algebra.         • UNIT I       LOGIC AND PROOFS         • Propositional equivalences - Predicates and quantifiers - Nested quantifiers         • Rules of inference - Introduction to proofs - Proof methods and strategy.         UNIT II       COMBINATORICS         IS         Mathematical induction - Strong induction and well ordering The basics of counting - The pigeonhole principle - Permutations and combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.         UNIT III       GRAPHS       15         Graphs and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.       15         UNIT IV       ALGEBRAIC STRUCTURES       15         Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Birect product and homomorphism - Some special lattices - Boolean algebra.       15		(Common to CSE,IT & AIML)	3	1	0	4
<ul> <li>Describe the arguments using connectives and rules of inference.</li> <li>Introduce the basic concept of counting and generating functions.</li> <li>Define the graphs and it's models.</li> <li>UINT I LOGIC AND PROOFS</li> <li>TS</li> <li>Propositional logic - Propositional equivalences - Predicates and quantifiers - Nested quantifiers - Rules of inference - Introduction to proofs - Proof methods and strategy.</li> <li>UNIT II COMBINATORICS</li> <li>IS</li> <li>Mathematical induction - Strong induction and well ordering The basics of counting - The pigeonhole principle - Permutations and combinations - Recurrence relations - Solving line are currence relations - Generating functions - Inclusion and exclusion principle and its applications.</li> <li>UNIT III GRAPHIS</li> <li>IS</li> <li>Graphs and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.</li> <li>UNIT IV ALGEBRAIC STRUCTURES</li> <li>IS</li> <li>Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.</li> <li>UNIT V LATTICES AND BOOLEAN ALGEBRA</li> <li>IS</li> <li>Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub littices - Direct product and homomorphism - Some special lattices - Boolean algebra.</li> <li>UONTCOMES:</li> <li>Upon completion of the course, the students will be able to:</li> <li>CO3: Determine Euler's path and Hamilton paths.</li> <li>CO4: Identify algebraic structures of groups, rings, and fields.</li> <li>CO5: Interpret lattices as algebraic structures.</li> <li>TEXTBOOKS:</li> <li>Rosen, K.H., "Discrete Mathematics and its Applications," 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2010.</li> <li>Trem</li></ul>	OBJE The course	CCTIVES:				
<ul> <li>Introduce the basic concept of counting and generating functions.</li> <li>Define the graphs and it's models.</li> <li>Understand the concept of group theory, lattices and Boolean algebra.</li> <li>UNTT I LOGIC AND PROOFS 15</li> <li>Propositional logic - Propositional equivalences - Predicates and quantifiers - Nested quantifiers - Rules of inference - Introduction to proofs - Proof methods and strategy.</li> <li>UNIT II COMBINATORICS 15</li> <li>Mathematical induction - Strong induction and well ordering The basics of counting - The pigeonhole principle - Permutations and combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.</li> <li>UNIT III GRAPHS 15</li> <li>Graphs and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.</li> <li>UNIT IV ALGEBRAIC STRUCTURES 15</li> <li>Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.</li> <li>UNIT V LATTICES AND BOOLEAN ALGEBRA 15</li> <li>Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.</li> <li>CO3: Dotermine Euler's path and Hamilton paths.</li> <li>CO4: Identify algebraic structures of groups, rings, and fields.</li> <li>CO5: Interpret lattices as algebraic structures.</li> <li>TEXTBOOKS:</li> <li>Resen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.</li> <li>Tremblay, J.P. and Manohar,R. "Discrete Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>Lipschutz, S. and Mar</li></ul>	• De	scribe the arguments using connectives and rules of inference.				
<ul> <li>Define the graphs and it's models.</li> <li>Understand the concept of group theory, lattices and Boolean algebra.</li> <li>UNIT I LOGIC AND PROOFS</li> <li>15</li> <li>Propositional logic - Propositional equivalences - Predicates and quantifiers - Nested quantifiers - Rules of inference - Introduction to proofs - Proof methods and strategy.</li> <li>UNIT II COMBINATORICS</li> <li>Mathematical induction - Strong induction and well ordering The basics of counting - The pigeonhole principle - Permutations and combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.</li> <li>UNIT III GRAPHS</li> <li>I5</li> <li>Graphs and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.</li> <li>UNIT IV ALGEBRAIC STRUCTURES</li> <li>I5</li> <li>Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.</li> <li>UNIT V LATTICES AND BOOLEAN ALGEBRA</li> <li>Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Soule and pebraic.</li> <li>CO2: Solve linear recurrence relations.</li> <li>CO3: Determine Euler's path and Hamilton paths.</li> <li>CO4: Identify algebraic structures of groups, rings, and fields.</li> <li>CO5: Interpret lattices as algebraic structures.</li> <li>TEXTBOOKS:</li> <li>1. Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.</li> <li>Tremblay, J.P. and Manohar, R., "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd., New Delhi, 2014.</li> <li>2. Lipschutz, S. and Mark Lipson, "Discrete Mathematics"</li></ul>	• Int	roduce the basic concept of counting and generating functions.				
<ul> <li>Understand the concept of group theory, lattices and Boolean algebra.</li> <li>UNT I LOGIC AND PROOFS</li> <li>Propositional logic - Propositional equivalences - Predicates and quantifiers - Nested quantifiers - Rules of inference - Introduction to proofs - Proof methods and strategy.</li> <li>UNIT II COMBINATORICS</li> <li>I5 Mathematical induction - Strong induction and well ordering The basics of counting - The pigeonhole principle - Permutations and combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.</li> <li>UNIT III GRAPHS</li> <li>I5</li> <li>Graphs and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.</li> <li>UNIT IV ALGEBRAIC STRUCTURES</li> <li>Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.</li> <li>UNIT V LATTICES AND BOOLEAN ALGEBRA</li> <li>Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.</li> <li>CO1: Validate the arguments using connectives and rule of inference.</li> <li>CO2: Solve linear recurrence relations.</li> <li>CO3: Determine Euler's path and Hamilton paths.</li> <li>CO4: Identify algebraic structures of groups, rings, and fields.</li> <li>CO5: Interpret lattices as algebraic structures.</li> <li>TEXTBOOKS:</li> <li>1. Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd, New Delhi, Soth Reprint, 2017.</li> <li>REFERENCES:</li> <li>1. Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.&lt;</li></ul>	• De	fine the graphs and it's models.				
UNIT 1       LOGIC AND PROOFS       15         Propositional logic - Propositional equivalences - Predicates and quantifiers - Nested quantifiers       -         Rules of inference - Introduction to proofs - Proof methods and strategy.       15         Mathematical induction - Strong induction and well ordering The basics of counting - The pigeonhole principle - Permutations and combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.       15         UNIT III       GRAPHS       15         Graphs and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.       15         UNIT IV       ALGEBRAIC STRUCTURES       15         Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.       15         OUTCOMES:       Upon completion of the course, the students will be able to:       CO3: Determine Euler's path and Hamilton paths.         CO4: Identify algebraic structures of groups, rings, and fields.       CO5: Interpret lattices as algebraic structures.         TEXTBOOKS:       1       Rosen, K.H., "Discrete Mathematics and it	• Un	derstand the concept of group theory, lattices and Boolean algebra.				
Propositional logic - Propositional equivalences - Predicates and quantifiers - Nested quantifiers         - Rules of inference - Introduction to proofs - Proof methods and strategy.         UNIT II       COMBINATORICS       15         Mathematical induction - Strong induction and well ordering The basics of counting - The pigeonhole principle - Permutations and combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.       15         UNIT III       GRAPHS       15         Graphs and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.       15         Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.       15         Partial ordering - Posets - Latices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.       15         OUTCOMES:       Upon completion of the course, the students will be able to:       CO2: Solve linear recurrence relations.         CO3: Determine Euler's path and Hamilton paths.       CO4: Identify algebraic structures of groups, rings, and fields.         CO4: Identify algebraic structures of groups, rings, and fields.       CO4: Identify algebraic structures of latticen, 2021.         2. Tremblay, J.P. and Manohar.R, "Discrete Mathematical M	UNIT I	LOGIC AND PROOFS				15
UNIT II       COMBINATORICS       15         Mathematical induction - Strong induction and well ordering The basics of counting - The pigeonhole principle - Permutations and combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.       15         Outrons       If an and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.       15         Orgaphs and graph isomorphism - Connectivity - Euler and Hamilton paths.       15         Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.       15         OUTCOMES:       Upon completion of the course, the students will be able to:       15         CO3: Determine Euler's path and Hamilton paths.       CO4: Identify algebraic structures of groups, and fields.       16         CO3: Determine Euler's path and Hamilton paths.       15       15         Partial ordering - Dosets - Lattices as algebraic structures.       15         Duro completion of the course, the students will be able to:       16       15         CO3: Determine Euler's path and Hamilton paths.       16<	Proposition - Rules of in	al logic - Propositional equivalences - Predicates and quantifiers - Ne nference - Introduction to proofs - Proof methods and strategy.	ested	l qua	ntif	iers
Mathematical induction - Strong induction and well ordering The basics of counting - The pigeonhole principle - Permutations and combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.         UNIT III       GRAPHS       15         Graphs and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.       15         UNIT IV       ALGEBRAIC STRUCTURES       15         Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.       15         OUTCOMES:       Upon completion of the course, the students will be able to:       CO1: Validate the arguments using connectives and rule of inference.         CO2: Solve linear recurrence relations.       CO3: Determine Euler's path and Hamilton paths.       CO4: Identify algebraic structures of groups, rings, and fields.         CO5: Interpret lattices as algebraic structures.       TEXTBOOKS:       1         1. Rosen, K.H., "Discrete Mathematics and its Applications," 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Soth Reprint, 2017.         REFERENCES:       1. Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied	UNIT II	COMBINATORICS				15
pigeonhole principle - Permutations and combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.         UNIT III       GRAPHS       15         Graphs and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.       15         UNIT IV       ALGEBRAIC STRUCTURES       15         Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.       15         OUTCOMES:       Upon completion of the course, the students will be able to:       CO1: Validate the arguments using connectives and rule of inference.         CO2:       Solve linear recurrence relations.       CO3: Determine Euler's path and Hamilton paths.       CO4: Identify algebraic structures of groups, rings, and fields.         CO5: Interpret lattices as algebraic structures.       10       REFERENCES:       1.         I. Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.       2.       Tremblay, J.P. and Manohar.R, " Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New De	Mathematic	al induction - Strong induction and well ordering The basics of	cou	nting	; - ′	The
Include of characteristic of the standard state of the sta	pigeonhole	relations - Generating functions - Inclusion and exclusion pr	- So incii	lving ale	g lin and	its
UNIT III       GRAPHS       15         Graphs and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.       15         UNIT IV       ALGEBRAIC STRUCTURES       15         Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.       15         UNIT V       LATTICES AND BOOLEAN ALGEBRA       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.       15         OUTCOMES:       Upon completion of the course, the students will be able to:       CO1: Validate the arguments using connectives and rule of inference.         CO2:       Solve linear recurrence relations.       CO3: Determine Euler's path and Hamilton paths.         CO4:       Identify algebraic structures of groups, rings, and fields.       CO5: Interpret lattices as algebraic structures.         TEXTBOOKS:       1       1       New Delhi, Special Indian Edition, 2021.       2         1.       Rrimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.       2       1         2.       Tremblay, J.P. and Manohar.R, "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New	applications	S.	men		and	105
Graphs and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.         UNIT IV       ALGEBRAIC STRUCTURES       15         Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.       15         OUTCOMES:       Upon completion of the course, the students will be able to:       CO1: Validate the arguments using connectives and rule of inference.         CO2:       Solve linear recurrence relations.       CO3: Determine Euler's path and Hamilton paths.         CO4:       Identify algebraic structures of groups, rings, and fields.         CO5:       Interpret lattices as algebraic structures.         TEXTBOOKS:       1         1.       ReFERENCES:         1.       Grimaldi, R.P. "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.         2.       Tremblay, J.P. and Manohar.R. " Discrete Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.         2.       Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.	UNIT III	GRAPHS				15
of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths. UNIT IV ALGEBRAIC STRUCTURES 15 Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields. UNIT V LATTICES AND BOOLEAN ALGEBRA 15 Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra. TOTAL: 75 PERIODS OUTCOMES: Upon completion of the course, the students will be able to: CO1: Validate the arguments using connectives and rule of inference. CO2: Solve linear recurrence relations. CO3: Determine Euler's path and Hamilton paths. CO4: Identify algebraic structures of groups, rings, and fields. CO5: Interpret lattices as algebraic structures. TEXTBOOKS: 1. Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021. 2. Tremblay, J.P. and Manohar.R, " Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017. REFERENCES: 1. Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014. 2. Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010. 3. Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.	Graphs and	graph models - Graph terminology and special types of graphs - Matri	x rei	prese	entat	tion
UNIT IV       ALGEBRAIC STRUCTURES       15         Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.       15         UNIT V       LATTICES AND BOOLEAN ALGEBRA       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.       15         OUTCOMES:       Upon completion of the course, the students will be able to:       CO1: Validate the arguments using connectives and rule of inference.         CO2:       Solve linear recurrence relations.       CO3: Determine Euler's path and Hamilton paths.         CO4:       Identify algebraic structures of groups, rings, and fields.       CO5: Interpret lattices as algebraic structures.         TEXTBOOKS:       1       Resen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.       2. Tremblay, J.P. and Manohar.R, " Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017.         REFERENCES:       1. Grimaldi, R.P. "Discrete and Combinatorial Mathematics". An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.       2. Lipschutz, S. and Mark Lipson, "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.       3. Koshy, T. "Discrete Mathematics with Applications, 2006.	of graphs and	nd graph isomorphism - Connectivity - Euler and Hamilton paths.				
Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's -         Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and         Fields.       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.       15         OUTCOMES:       Upon completion of the course, the students will be able to:       CO1: Validate the arguments using connectives and rule of inference.         CO2:       Solve linear recurrence relations.       CO3: Determine Euler's path and Hamilton paths.         CO4:       Identify algebraic structures of groups, rings, and fields.         CO5:       Interpret lattices as algebraic structures.         TEXTBOOKS:       1         1.       Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.         2.       Tremblay, J.P. and Manohar.R, " Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd., New Delhi, 30th Reprint, 2017.         REFERENCES:       1.         Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.         2.       Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.         3.	UNIT IV	ALGEBRAIC STRUCTURES				15
Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.       15         UNIT V       LATTICES AND BOOLEAN ALGEBRA       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.       15         OUTCOMES:       TOTAL: 75 PERIODS         OUTCOMES:       TOTAL: 75 PERIODS         OUTCOMES:       Upon completion of the course, the students will be able to:         CO2:       Solve linear recurrence relations.         CO3:       Determine Euler's path and Hamilton paths.         CO4:       Identify algebraic structures of groups, rings, and fields.         CO5:       Interpret lattices as algebraic structures.         TEXTBOOKS:       1         1.       Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.         2.       Tremblay, J.P. and Manohar.R, " Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017.         REFERENCES:       1.         1.       Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.         2.       Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co.	Algebraic s	systems - Semi groups and monoids - Groups - Subgroups - Hon	nom	orph	ism	<u>'s</u> -
Fields.       15         VINT V       LATTICES AND BOOLEAN ALGEBRA       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.       TOTAL: 75 PERIODS         OUTCOMES:       TOTAL: 75 PERIODS       OUTCOMES:         Upon completion of the course, the students will be able to:       CO1: Validate the arguments using connectives and rule of inference.         CO2:       Solve linear recurrence relations.       CO3: Determine Euler's path and Hamilton paths.         CO4:       Identify algebraic structures of groups, rings, and fields.         CO5:       Interpret lattices as algebraic structures.         TEXTBOOKS:       1         1. Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.         2. Tremblay, J.P. and Manohar.R, " Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017.         REFERENCES:       1. Grimaldi, R.P. "Discrete and Combinatorial Mathematics". An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.         2. Lipschutz, S. and Mark Lipson, "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.         3. Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.	Normal sub	ogroup and cosets - Lagrange's theorem - Definitions and example	es of	f Rir	igs	and
UNIT V       LATTICES AND BOOLEAN ALGEBRA       15         Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.       TOTAL: 75 PERIODS         OUTCOMES:       TOTAL: 75 PERIODS         Upon completion of the course, the students will be able to:       CO1: Validate the arguments using connectives and rule of inference.         CO2:       Solve linear recurrence relations.       CO3: Determine Euler's path and Hamilton paths.         CO4:       Identify algebraic structures of groups, rings, and fields.         CO5:       Interpret lattices as algebraic structures. <b>TEXTBOOKS:</b> 1.       Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.         2.       Tremblay, J.P. and Manohar.R, " Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017. <b>REFERENCES:</b> 1.       Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.         2.       Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.         3.       Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.	Fields.					
<ul> <li>Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.</li> <li>TOTAL: 75 PERIODS</li> <li>OUTCOMES:</li> <li>Upon completion of the course, the students will be able to:</li> <li>CO1: Validate the arguments using connectives and rule of inference.</li> <li>CO2: Solve linear recurrence relations.</li> <li>CO3: Determine Euler's path and Hamilton paths.</li> <li>CO4: Identify algebraic structures of groups, rings, and fields.</li> <li>CO5: Interpret lattices as algebraic structures.</li> </ul> TEXTBOOKS: <ol> <li>Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.</li> <li>Tremblay, J.P. and Manohar.R, " Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017. REFERENCES: <ol> <li>Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ol></li></ol>	UNIT V	LATTICES AND BOOLEAN ALGEBRA				15
TOTAL: 75 PERIODS         OUTCOMES:         Upon completion of the course, the students will be able to:         CO1: Validate the arguments using connectives and rule of inference.         CO2: Solve linear recurrence relations.         CO3: Determine Euler's path and Hamilton paths.         CO4: Identify algebraic structures of groups, rings, and fields.         CO5: Interpret lattices as algebraic structures.         TEXTBOOKS:         1. Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.         2. Tremblay, J.P. and Manohar.R, " Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017.         REFERENCES:         1. Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.         2. Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.         3. Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.	Partial orde - Sub lattice	ring - Posets - Lattices as posets - Properties of lattices - Lattices as al es - Direct product and homomorphism - Some special lattices - Boole	gebi ean a	raic s algeł	syste ora.	ems
<ul> <li>OUTCOMES:</li> <li>Upon completion of the course, the students will be able to:</li> <li>CO1: Validate the arguments using connectives and rule of inference.</li> <li>CO2: Solve linear recurrence relations.</li> <li>CO3: Determine Euler's path and Hamilton paths.</li> <li>CO4: Identify algebraic structures of groups, rings, and fields.</li> <li>CO5: Interpret lattices as algebraic structures.</li> </ul> <b>TEXTBOOKS:</b> <ol> <li>Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.</li> <li>Tremblay, J.P. and Manohar.R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017. <b>REFERENCES:</b> <ol> <li>Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ol></li></ol>		TOTAL	: 75	PE	RIO	DS
<ul> <li>Upon completion of the course, the students will be able to:</li> <li>CO1: Validate the arguments using connectives and rule of inference.</li> <li>CO2: Solve linear recurrence relations.</li> <li>CO3: Determine Euler's path and Hamilton paths.</li> <li>CO4: Identify algebraic structures of groups, rings, and fields.</li> <li>CO5: Interpret lattices as algebraic structures.</li> </ul> <b>TEXTBOOKS:</b> <ol> <li>Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.</li> <li>Tremblay, J.P. and Manohar.R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017. <b>REFERENCES:</b> <ol> <li>Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ol></li></ol>	OUT	COMES:				
<ul> <li>CO1: Validate the arguments using connectives and rule of inference.</li> <li>CO2: Solve linear recurrence relations.</li> <li>CO3: Determine Euler's path and Hamilton paths.</li> <li>CO4: Identify algebraic structures of groups, rings, and fields.</li> <li>CO5: Interpret lattices as algebraic structures.</li> </ul> <b>TEXTBOOKS:</b> <ol> <li>Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.</li> <li>Tremblay, J.P. and Manohar.R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017. <b>REFERENCES:</b> <ol> <li>Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ol></li></ol>	Upon con	npletion of the course, the students will be able to:				
<ul> <li>CO2: Solve fineal recurrence relations.</li> <li>CO3: Determine Euler's path and Hamilton paths.</li> <li>CO4: Identify algebraic structures of groups, rings, and fields.</li> <li>CO5: Interpret lattices as algebraic structures.</li> </ul> <b>TEXTBOOKS:</b> <ol> <li>Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.</li> <li>Tremblay, J.P. and Manohar.R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017. <b>REFERENCES:</b> <ol> <li>Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ol></li></ol>	CO1: Va	alidate the arguments using connectives and rule of inference.				
<ul> <li>CO4: Identify algebraic structures of groups, rings, and fields.</li> <li>CO5: Interpret lattices as algebraic structures.</li> <li><b>TEXTBOOKS:</b> <ol> <li>Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.</li> <li>Tremblay, J.P. and Manohar.R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017.</li> </ol> </li> <li><b>REFERENCES:</b> <ol> <li>Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ol> </li> </ul>	CO2: 50 CO3: De	termine Euler's path and Hamilton paths.				
<ul> <li>CO5: Interpret lattices as algebraic structures.</li> <li><b>TEXTBOOKS:</b> <ol> <li>Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.</li> <li>Tremblay, J.P. and Manohar.R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017.</li> </ol> </li> <li><b>REFERENCES:</b> <ol> <li>Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ol> </li> </ul>	CO4: Ide	entify algebraic structures of groups, rings, and fields.				
<ul> <li>TEXTBOOKS:</li> <li>1. Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.</li> <li>2. Tremblay, J.P. and Manohar.R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017.</li> <li>REFERENCES:</li> <li>1. Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>2. Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>3. Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ul>	CO5: Int	erpret lattices as algebraic structures.				
<ol> <li>Rosen, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.</li> <li>Tremblay, J.P. and Manohar.R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017.</li> <li><b>REFERENCES:</b> <ol> <li>Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ol> </li> </ol>	TEXTBOO	DKS:				
<ul> <li>Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.</li> <li>2. Tremblay, J.P. and Manohar.R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017.</li> <li><b>REFERENCES:</b> <ol> <li>Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ol> </li> </ul>	1. Ros	en, K.H., "Discrete Mathematics and its Applications", 8th Edition, T	'ata ]	McG	raw	7
<ol> <li>Thembray, J.F. and Mahohar.K, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2017.</li> <li><b>REFERENCES:</b> <ol> <li>Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ol> </li> </ol>	Hill	Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021.	Ann	licat	iona	to
<ul> <li>REFERENCES:</li> <li>1. Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>2. Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>3. Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ul>	Z. Hei Con	nputer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Re	eprir	nt, 20	)17.	10
<ol> <li>Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5th Edition, Pearson Education Asia, Delhi, 2014.</li> <li>Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ol>	REFE	CRENCES:				
<ul> <li>Edition, Pearson Education Asia, Delhi, 2014.</li> <li>2. Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>3. Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ul>	1. Grit	naldi, R.P. "Discrete and Combinatorial Mathematics: An Applied In	trod	uctic	on",	5th
<ol> <li>Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.</li> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> </ol>	Edit	ion, Pearson Education Asia, Delhi, 2014.		T. (	_	
<ol> <li>Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.</li> <li>42</li> </ol>	2. Lips	Schulz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outli Graw Hill Pub. Co. Ltd. New Delbi, 3rd Edition, 2010	nes,	1 ata	1	
42	3. Kos	hy, T. "Discrete Mathematics with Applications". Elsevier Publication	ns. 2	2006		
•		42				

	COMPUTER ORGANIZATION ANDARCHITECTURE	L	Т	Р	С	
22CS302	(Common to CSE and AIML)	3	0	0	3	
		5	v	v	0	
OBJECTIVES:						
The Course v	vill enable learners to:					
•	Describe the basic principles and operations of digital compu	uters.				
•	Design arithmetic and logic unit for various fixed and floating	ng poi	nt ope	ration	S	
•	Construct pipeline architectures for RISC processors.					
•	Explain various memory systems &I/O interfacings					
•	Discuss parallel processor and multi-processor architectures					
UNIT I	COMPUTER FUNDAMENTALS				9	
Computer Ty	pes - Functional Units — Basic Operational Concepts — Numl	ber Re	prese	ntatio	n and	
Arithmetic O	perations - Performance Measurement — Instruction Set A	Archite	ecture	- Me	emory	
Locations and	Addresses - Instructions and Instruction Sequencing - Addres	sing N	lodes.			
UNIT II	COMPUTER ARITHMETIC				9	
Addition and	Subtraction of Signed Numbers - Design of Fast Adders - Mul	tiplica	ation o	of Uns	igned	
Numbers - M	ultiplication of Signed Numbers - Fast Multiplication - Integ	er Di	vision	- Flo	- ating-	
Point Number	rs and Operations.					
UNIT III	BASIC PROCESSING UNIT AND PIPELINING				9	
Basic Process	ing Unit: Concepts - Instruction Execution - Hardware Compo	nents	-			
Instruction Fe	tch and Execution Steps -Control Signals - Hardwired Control					
Pipelining: Ba	asic Concept - Pipeline Organization- Pipelining Issues - Data I	Depen	denci	es -		
Memory Dela	ys - Branch Delays - Resource Limitations - PerformanceEvalu	uation	-Supe	erscala	ır	
Operation.	I/O AND MEMORY		-		0	
		14	C		ע י	
Input/Output	organization: Bus Structure - Bus Operation - Arbitration - The	Wiem(	ory Sy	stem:	Basic	
Concepts - S	enficonductor KAW Memories - Kead-only Memories - Di		lemor	y ACC	ess -	
Iviemory Hier	archy - Cache Memories - Performance Considerations - Virt	ual M	emory	/ - IVIE	emory	
Management	Requirements - Secondary Storage.		DC		•	
UNITV	PAKALLEL PROCESSING AND MULTICORE COMP	UTE.	KS		9	
Parallel Proce	essing: Use of Multiple Processors - Symmetric Multiprocesso	rs - M	ultith	readin	g and	
Chip Multipro	ocessors - Clusters - Non uniform Memory Access Computers	s Vect	or Co	mputa	tion -	
Multicore Org	ganization.					
	<b>P</b> 0	TOT	AL:45	<b>PER</b>	IODS	
OUTCOM						
Upon comp	letion of the course, the students will be able to:					
CO1: Expla	in the basic principles and operations of digital computers.					
CO2:Design	Arithmetic and Logic Unit to perform fixed and floating-poin	t oper	ations			
CO3: Devel	op pipeline architectures for RISC Processors.					
CO4: Sum	narize Various Memory systems &I/O interfacings.					
TEXTROOK	S:					
	aw •					
	43					

1.Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer organization, Tata McGrawHill, Sixth edition, 2012.

2.David A. Patterson and John L. Hennessy Computer Organization and Design-The Hardware/Software Interface 5th edition, Morgan Kaufmann, 2013.

# **REFERENCES:**

1. John P. Hayes, Computer Architecture and Organization, Third Edition, TataMcGrawHill, 2012.

2.David A. Patterson and John L. Hennessy Computer Organization and Design-The Hardware/Software Interface, 6th edition, Morgan Kaufmann, 2021.

3.John L. Hennessy and David A. Patterson, Computer Architecture – A Quantitate Approach, Morgan Kaufmann / Elsevier Publishers, Fifth Edition, 2012.

22015201	TAMILS AND TECHNOLOGY	L	Т	P	С
22GE201	(Common to All Branches)	1	0	0	1
OBJECTIV					
The Course	will enable learners to:				
Reco	gnize the historical significance of weaving and potter	ry tech	nolog	ies ina	ancient
Tami	l civilization.		U		
• High	light the concepts of design and construction technolo	gy dur	ing th	e San	gamage.
Provi	de an overview of manufacturing technology and its r	ole in 7	Гатіl	socie	ty.
• Illust	rate the agricultural and irrigation techniques employe	ed in ar	ncient	Tamil	l
socie	ty.				
Prom	ote scientific Tamil and Tamil computing.				
	WEAVING AND CEDAMIC TECHNOLOCY			_	3
UNII I Waaying Indi	WEAVING AND CERAMIC TECHNOLOGY	Plack	and	Dad V	J
weaving ind	ustry during Sangani Age – Ceranic technology –	Біаск	and	Red v	vare
Potteries (BR	W) – Graffiti on Potteries.				2
	DESIGN AND CONSTRUCTION TECHNOLO	σY		1 1	3
Designing an	d Structural construction House & Designs in house	hold n	nateria	als du	ringSangam
Age - Buildin	ng materials and Hero stones of Sangam age – Deta	ils of	Stage		
Constructions	in Silappathikaram - Sculptures and Temples of M	Iamalla	apurar	n – G	reat
Temples of C	Cholas and other worship places - Temples of Nayaka	a Perio	d - Ty	pe st	udy(Madurai
Meenakshi To	emple)- Thirumalai Nayakar Mahal - Chetti Nadu H	ouses,	Indo ·	-	
Saracenic arc	hitecture at Madras during British Period.	- 10			
UNIT III	MANUFACTURING TECHNOLOGY	80	3		3
Art of Ship B	uilding - Metallurgical studies - Iron industry - Iron s	meltin	g,steel	l -Cop	per and gold-
Coins as sour	ce of history - Minting of Coins – Beads making-indu	stries S	Stone	beads	- Glass beads
- Terracotta b	eads -Shell beads/ bone beats - Archeological				
evidences - G	em stone types described in Silappathikaram.				
UNIT IV	AGRICULTURE AND IRRIGATION TECHNO	LOGY	ζ		3
Dam, Tank, p	onds, Sluice, Significance of Kumizhi Thoompu of Cl	nola Pe	riod, A	Anima	al Husbandry
- Wells desig	ned for cattle use - Agriculture and Agro Processing -	Knowl	edge	of Sea	ι - Fisheries
– Pearl - Conc	che diving - Ancient Knowledge of Ocean - Knowledg	e Spec	ific So	ociety	
UNIT V	SCIENTIFIC TAMIL & TAMIL COMPUTING	*		<u> </u>	3

Development of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Development of Tamil Software – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries

Sorkuvai Project.

<b>TOTAL:15PERIODS</b>
------------------------

# **OUTCOMES:**

## Upon completion of the course, the students will be able to:

**CO1:**Identify the role of weaving and ceramic technology in ancient Tamil Culture.

**CO2:**Assess the design and construction technology ideas in the current Tamil society.

**CO3:**Identify the different types of manufacturing technology used in Tamil society andtheir significance.

**CO4:**Classify agricultural and irrigation technologies in ancient Tamil society and itscurrent relevance.

**CO5:**Discuss the fundamentals of scientific Tamil and Tamil computing.

## **TEXTBOOKS& REFERENCE BOOKS:**

தமிழக வரலாறு – மக்களும் பண்பாடும் – கே.கே. பிள்ளை (வெளியடு):

- தமிழ்நாடு பாடநால் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை 3. வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K. Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S. Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D.Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Published by: International Institute of Tamil Studies.)
- Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Publishedby: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr. K. K. Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & TamilNadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R. Balakrishnan) (Published by: RMRL) Reference Book

	22CS303				-	v
$(Common to CSE, IT and AIML) \qquad 2 \qquad 0 \qquad 2$		(Common to CSE, IT and AIML)	2	0	2	3

# **OBJECTIVES:**

# The Course will enable learners to:

- Critically analyse the efficiency of alternative algorithmic solutions for the same problem Illustrate brute force and divide and conquer design techniques.
- Explain dynamic programming for solving various problems.
- Apply greedy technique and iterative improvement technique to solve optimization problems
- Examine the limitations of algorithmic power and handling it in different problems.

<ul> <li>otion of an Algorithmi – Fundamentals of Algorithmic Problem Solving –Fundamentals of the nalysis of Algorithmic Efficiency – Asymptotic Notations and their properties. Analysis anework Mathematical analysis for Recursive and Non-recursive algorithms</li> <li>Serform the recursive algorithm analysis.</li> <li>Perform the non-recursive algorithm analysis.</li> <li>Wire a Drogram to sort the elements using merge sort and find time complexity.</li> <li>Write a program to sort the elements using heap sort</li> <li>Write a program to sort the elements using heap sort</li> <li>Write a program to sort the elements using heap sort</li> <li>UNIT II DYNAMIC PROGRAMMING</li> <li>Mrite a program to find optimal binary search tree for a given list of keys.</li> <li>Solve the multi-stage graph to find shortest path using backward and forward approach</li> <li>Write a program to find optimal binary search tree for a given list of keys.</li> <li>Solve the multi-stage graph to find shortest path using backward and forward approach</li> <li>Write a program to find the longest common subsequence</li></ul>	UNIT I INTRODUCTION	6+6	
amework Mathematical analysis for Recursive and Non-recursive algorithms ist of Exercise/Experiments: 1. Perform the recursive algorithm analysis. 2. Perform the non-recursive algorithm analysis. 3. Perform the non-recursive algorithm of the spectra in the program to Search - Marge sort – Quick sort and find time complexity. 3. Write a program to sort the elements using quick sort and find time complexity. 3. Write a program to sort the elements using heap sort 2. Write a program to sort the elements using heap sort 2. Write a program to sort the elements using functions. 3. Solve the multi-stage graph to find shortest path using backward and forward approach 3. Write a program to find optimal binary search tree for a given list of keys. 3. Solve the multi-stage graph to find shortest path using backward and forward approach 3. Write a program to find the longest common subsequence 2. UNIT IV GREEDY TECHNIQUE AND TERATIVE IMPROVEMENT 6-66 7. Portex Problem - Maximum Matching in Biparitie Graphs- The Stable marriage Problem 3. Write a program to find minimum spanning tree 3. Write a program to find minimum spanning tree 3. Write a program to solve naximum flow problem 3. Mrite a program to solve naximum flow problem 3. Write a program to solve naximum flow problem 3. Write a program to solve naximum flow problem 3. Write a program to solve naximum flow problem 3. Write a program to solve N-Queen problem 3. Write a program to solve N-Qu	Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving –Fundamentals Analysis of Algorithmic Efficiency – Asymptotic Notations and their properties. Ar	of the nalysis	
ist of Exercise/Experiments:          1. Perform the recursive algorithm analysis.       646         UNIT II BRUTE FORCE ANDDIVIDE AND CONQUER 646         OPERFORM the non-recursive algorithm analysis.         UNIT II BRUTE FORCE ANDDIVIDE AND CONQUER 646         OPERFORME FORCE ANDDIVIDE AND CONQUER 646         OPERFORCE ANDDIVIDE AND CONQUER 646         OPERFORCE ANDOINTEE AND CONQUER 101000         OPERFORCE ANDOINTEE AND CONQUER 101000         OPERFORMENT:         OPERFORMENT:         A Write a program to search an element using binary search         Write a program to sort the elements using merge sort and find time complexity.         A Write a program to sort the elements using heap sort         UNIT III DYNAMIC PROGRAMMING 646         OPERFORMENT:         A Longest common subsequence - Matrix-chainmultiplication - Travelling lesperson Problem - Knapsack Problem and Memory functions.         Stof Exercise/Experiments:         1. Solve Floyd's algorithm         A Write a program to find optimal binary search tree for a given list of keys.         Solve the multi-stage graph to find shortest path using backward and forward approach         A Write a program to find the longest common subsequence <td c<="" td=""><td>Framework –Mathematical analysis for Recursive and Non-recursive algorithms</td><td></td></td>	<td>Framework –Mathematical analysis for Recursive and Non-recursive algorithms</td> <td></td>	Framework –Mathematical analysis for Recursive and Non-recursive algorithms	
1. Perform the recursive algorithm analysis.       6+6         2. Perform the non-recursive algorithm analysis.       6+6         UNTI II BRUTE FORCE ANDDIVIDE AND CONQUER       6+6         the off core - String Matching - Exhaustive Search - Knapsack Problem -Divide and Conque ethodology - Binary Search - Merge sort - Quick sort - Multiplication of Large Integers losest-Pair and Convex Hull Problems - Transform and Conquer Method: Heap Sort         stof Exercise/Experiments:       1. Write a program to search an element using binary search         2. Write a program to sort the elements using quick sort and find time complexity.       3. Write a program to sort the elements using heap sort         UNTI II       DYNAMIC PROGRAMMING       6+6         ynamic programming - Principle of optimality - Floyd's algorithm - Multi stage graph - Optima nary Search Trees - Longest common subsequence - Matrix-chainmultiplication - Travelling desperson Problem - Knapsack Problem and Memory functions.       6+6         st of Exercise/Experiments:       1. Solve Floyd's algorithm       1. Write a program to find optimal binary search tree for a given list of keys.       3. Solve the multi-stage graph to find shortest path using backward and forward approach       4. Write a program to find the longest common subsequence       1. Mrite a program to find the longest common subsequence       1. Write a program to find the longest common subsequence       1. Write a program to find the longest common subsequence       1. Write a program to find the longest common subsequence       1. Write a program to find the longest common subsequence	List of Exercise/Experiments:		
2. Perform the non-recursive algorithm analysis.       6+6         UNIT II       BRUTE FORCE ANDIVIDE AND CONQUER       6+6         Une Force - String Matching - Exhaustive Search - Knapsack Problem -Divide and Conque ethodology - Binary Search - Merge sort - Quick sort - Multiplication of Large Integers losest-Pair and Convex Hull Problems - Transform and Conquer Method: Heap Sort         st of Exercise/Experiments:       1. Write a program to sort the element using merge sort and find time complexity.         3. Write a program to sort the elements using heap sort       6+6         VINIT II       DYNAMIC PROGRAMMING       6+6         ynamic programming - Principle of optimality - Floyd's algorithm - Multi stage graph - Optima nary Search Trees - Longest common subsequence - Matrix-chaimmultiplication - Travelling desperson Problem - Knapsack Problem and Memory functions.       6+6         st of Exercise/Experiments:       1. Solve the multi-stage graph to find shortest path using backward and forward approach       4. Write a program to find optimal binary search tree for a given list of keys.       3. Solve the multi-stage graph to find shortest path using backward and forward approach       4. Write a program to find the longest common subsequence       6+6         VINT IV       GREEDY TECHNIQUE AND TERATIVE IMPROVEMENT       6+66       6+60         vertice a program to find the longest common subsequence       1. Write a program to find the longest common subsequence       6+60         UNT IV       GREEDY TECHNIQUE AND TERATIVE IMPROVEMENT <t< td=""><td>1. Perform the recursive algorithm analysis.</td><td></td></t<>	1. Perform the recursive algorithm analysis.		
UNIT II       BRUTE FORCE ANDDIVIDE AND CONQUER       646         uter Force - String Matching - Exhaustive Search - Knapsack Problem -Divide and Conque ethodology - Binary Search - Merge sort - Quick sort - Multiplication of Large Integers - losest-Pair and Convex Hull Problems - Transform and Conquer Method: Heap Sort         ist of Exercise/Experiments:       1. Write a program to search an element using binary search         2. Write a program to sort the elements using merge sort and find time complexity.         3. Write a program to sort the elements using heap sort         UNIT III DYNAMIC PROGRAMMING 646         vmmine programming - Principle of optimality - Floyd's algorithm - Multi stage graph - Optimainary Search Trees - Longest common subsequence - Matrix-chainmultiplication - Travelling desperson Problem - Knapsack Problem and Memory functions.         Store Exercise/Experiments:         1. Solve Floyd's algorithm       2. Write a program to find optimal binary search tree for a given list of keys.         3. Solve the multi-stage graph to find shortest path using backward and forward approach       4. Write a program to find the longest common subsequence         UNIT IV       GREEDY TECHNIQUE AND TERATIVE IMPROVEMENT       6+6         Methodia binary search tree for a given list of keys.         Solve the multi-stage graph to find shortest path using backward and forward approach         Write a program to find the longest common subsequence         UNIT IV GREEDY TECHNIQUE A	2. Perform the non-recursive algorithm analysis.		
uite Force - String Matching - Exhaustive Search - Knapsack Problem -Divide and Conque ethodology - Binary Search - Merge sort - Quick sort - Multiplication of Large Integers osest-Pair and Convex Hull Problems - Transform and Conquer Method: Heap Sort         ist of Exercise/Experiments:       1. Write a program to search an element using binary search         2. Write a program to sort the elements using merge sort and find time complexity.         3. Write a program to sort the elements using duck sort and find time complexity.         4. Write a program to sort the elements using heap sort         UNIT III DYNAMIC PROGRAMMING 6646         optimary Search Trees - Longest common subsequence - Matrix-chainmultiplication - Travelling         desperson Problem - Knapsack Problem and Memory functions.         ist of Exercise/Experiments:         1. Solve Floyd's algorithm         2. Write a program to find optimal binary search tree for a given list of keys.         3. Solve the multi-stage graph to find shortest path using backward and forward approach         4. Write a program to find the longest common subsequence         UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT         6+60         reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees, The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem         ist of Exercise/Experiments:         1. Write a program to solve maximum flow problem         1. Write a program to solve maximum flow pro	UNIT II BRUTE FORCE ANDDIVIDE AND CONQUER	6+6	
ist of Exercise/Experiments:         1. Write a program to search an element using binary search         2. Write a program to sort the elements using merge sort and find time complexity.         3. Write a program to sort the elements using quick sort and find time complexity.         4. Write a program to sort the elements using quick sort and find time complexity.         4. Write a program to sort the elements using quick sort and find time complexity.         4. Write a program to sort the elements using duick sort and find time complexity.         4. Write a program to sort the elements using duick sort and find time complexity.         5. Write a program to sort the elements using duick sort and find time complexity.         6. Hot programming – Principle of optimality – Floyd's algorithm – Multi stage graph - Optima nary Search Trees - Longest common subsequence - Matrix-chainmultiplication – Travelling desperson Problem – Knapsack Problem and Memory functions.         ist of Exercise/Experiments:       1. Solve Floyd's algorithm         2. Write a program to find optimal binary search tree for a given list of keys.       3. Solve the multi-stage graph to find shortest path using backward and forward approach         4. Write a program to find the longest common subsequence       UNIT VI GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT       6+6         reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem       1. Write a program to find minimum spanning tree using Prim's algorithm	Brute Force - String Matching - Exhaustive Search - Knapsack Problem -Divide and Co Methodology – Binary Search – Merge sort – Quick sort - Multiplication of Large Integ Closest Pair and Convex Hull Problems – Transform and Conguer Method: Heap Sort	onquer gers –	
ist of Exercise/Experiments:  1. Write a program to search an element using binary search 2. Write a program to sort the elements using merge sort and find time complexity. 3. Write a program to sort the elements using merge sort and find time complexity. 4. Write a program to sort the elements using heap sort <b>UNIT III DYNAMIC PROGRAMMING</b> 646  ynamic programming – Principle of optimality – Floyd's algorithm – Multi stage graph - Optima nary Search Trees - Longest common subsequence - Matrix-chainmultiplication – Travelling desperson Problem – Knapsack Problem and Memory functions. <b>ist of Exercise/Experiments:</b> 1. Solve Floyd's algorithm 2. Write a program to find optimal binary search tree for a given list of keys. 3. Solve the multi-stage graph to find shortest path using backward and forward approach 4. Write a program to find the longest common subsequence <b>UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT</b> 6466 reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem <b>ist of Exercise/Experiments:</b> 1. Write a program to find minimum spanning tree using Prim's algorithm 2. Implement Kruskal's algorithm to find minimum spanning tree 3. Write a program to solve maximum flow problem <b>UNIT V BACKTRACKING AND BRANCH AND BOUND</b> 6460 NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound – LIFO Search and FIFO search - Assignment problem Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling desman problem <b>ist of Exercise/Experiments:</b> 1. Write a program to implement sum of subset problem. 2. Write a program to implement sum of subset problem. 3. Solve the assignment problem using branch and bound technique 4. Solve the assignment problem using branch and bound technique 4. Solve the assignment problem using branch and bound technique 4. Solve the assignment problem using branch and bound technique 4. Solve knapsack problem	Closest-rail and Convex fruit Problems - fransform and Conquel Method. freap Soft		
<ol> <li>Write a program to search an element using binary search</li> <li>Write a program to sort the elements using merge sort and find time complexity.</li> <li>Write a program to sort the elements using quick sort and find time complexity.</li> <li>Write a program to sort the elements using heap sort</li> <li>UNIT III   DYNAMIC PROGRAMMING 6460</li> <li>Martin Press - Longest common subsequence - Matrix-chainmultiplication - Travelling tesperson Problem - Knapsack Problem and Memory functions.</li> <li>Ist of Exercise/Experiments:         <ol> <li>Solve Floyd's algorithm</li> <li>Write a program to find optimal binary search tree for a given list of keys.</li> <li>Solve the multi-stage graph to find shortest path using backward and forward approach</li> <li>Write a program to find the longest common subsequence</li> </ol> </li> <li>UNIT IV   GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT 6460</li> <li>Write a program to find minimum spanning tree using Prim's algorithm</li> <li>Implement Kruskal's algorithm to find minimum spanning tree.</li> <li>Write a program to solve maximum flow problem</li> </ol> <li>Write a program to solve maximum flow problem</li> <li>Mrite a program to solve maximum flow problem</li> <li>UNIT V   BACKTRACKING AND BRANCH AND BOUND 6460</li> <li>NP NP- Complete and NP Hard Problems. Backtracking - N-Queen problem - SubsetSum oblem. Branch and Bound - LIFO Search and FIFO search - Assignment problem</li> <li>Knapsack Problem - Approximation Algorithms for NP-Hard Problems - Travelling tesman problem</li> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to implement sum of subset problem.</li>	List of Exercise/Experiments:		
<ol> <li>Write a program to sort the elements using merge sort and find time complexity.</li> <li>Write a program to sort the elements using quick sort and find time complexity.</li> <li>Write a program to sort the elements using heap sort</li> <li>Write a program to sort the elements using heap sort</li> <li>UNIT III DYNAMIC PROGRAMMING 6460</li> <li>Yonamic programming – Principle of optimality – Floyd's algorithm – Multi stage graph - Optima inary Search Trees - Longest common subsequence - Matrix-chainmultiplication – Travelling desperson Problem – Knapsack Problem and Memory functions.</li> <li>Solve Floyd's algorithm</li> <li>Write a program to find optimal binary search tree for a given list of keys.</li> <li>Solve the multi-stage graph to find shortest path using backward and forward approach</li> <li>Write a program to find the longest common subsequence</li> <li>UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT 6460</li> <li>Write a program to find multimum spanning tree using Prim's algorithm</li> <li>Write a program to find minimum spanning tree using Prim's algorithm</li> <li>Implement Kruskal's algorithm to find minimum spanning tree</li> <li>Write a program to solve maximum flow problem</li> <li>UNIT V BACKTRACKING AND BRANCH AND BOUND 6460</li> <li>NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound – LIFO Search and FIFO search - Assignment problem</li> <li>Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling desman problem</li> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to implement sum of subset problem.</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve the assignment problem using branch and bound technique</li> </ol>	<b>1.</b> Write a program to search an element using binary search		
<ol> <li>Write a program to sort the elements using quick sort and find time complexity.</li> <li>Write a program to sort the elements using heap sort</li> <li>Write a program to sort the elements using heap sort</li> <li>UNIT III DYNAMIC PROGRAMMING [6+6]</li> <li>Anamic programming – Principle of optimality – Floyd's algorithm – Multi stage graph - Optima nary Search Trees - Longest common subsequence - Matrix-chainmultiplication – Travelling desperson Problem – Knapsack Problem and Memory functions.</li> <li>Solve Floyd's algorithm</li> <li>Write a program to find optimal binary search tree for a given list of keys.</li> <li>Solve the multi-stage graph to find shortest path using backward and forward approach</li> <li>Write a program to find the longest common subsequence</li> <li>UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT [6+6]</li> <li>Greedy Technique – Prin's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem</li> <li>St of Exercise/Experiments:         <ul> <li>Write a program to find minimum spanning tree using Prim's algorithm</li> <li>Implement Kruskal's algorithm to find minimum spanning tree</li> <li>Write a program to solve maximum flow problem</li> </ul> </li> <li>UNIT V BACKTRACKING AND BRANCH AND BOUND [6+6]</li> <li>MP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound – LIFO Search and FIFO Search - Assignment problem</li> <li>Kot of Exercise/Experiments:         <ul> <li>Write a program to solve N-Queen problem.</li> <li>Myrite a program to solve N-Queen problem.</li> </ul> </li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve thassignment problem using branch and bound technique</li></ol>	2. Write a program to sort the elements using merge sort and find time complexity.		
<ol> <li>Write a program to sort the elements using heap sort</li> <li>UNIT III DYNAMIC PROGRAMMING 646</li> <li>Arrowski and the elements using heap sort</li> <li>UNIT III DYNAMIC PROGRAMMING 646</li> <li>Arrowski algorithm – Floyd's algorithm – Multi stage graph - Optima inary Search Trees - Longest common subsequence - Matrix-chainmultiplication – Travelling desperson Problem – Knapsack Problem and Memory functions.</li> <li>Solve Floyd's algorithm</li> <li>Solve Floyd's algorithm</li> <li>Solve Floyd's algorithm</li> <li>Write a program to find optimal binary search tree for a given list of keys.</li> <li>Solve the multi-stage graph to find shortest path using backward and forward approach</li> <li>Write a program to find the longest common subsequence</li> <li>UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT 6+6</li> <li>Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum own Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem</li> <li>St of Exercise/Experiments:         <ol> <li>Write a program to find minimum spanning tree using Prim's algorithm</li> <li>Implement Kruskal's algorithm to find minimum spanning tree</li> <li>Write a program to solve maximum flow problem</li> </ol> </li> <li>UNIT V BACKTRACKING AND BRANCH AND BOUND 6+6</li> <li>NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound – LIFO Search and FIFO Search - Assignment problem Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling desman problem</li> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to solve N-Queen problem</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ol>	<b>3.</b> Write a program to sort the elements using quick sort and find time complexity.		
UNIT III       DYNAMIC PROGRAMMING       6+6         ynamic programming – Principle of optimality – Floyd's algorithm – Multi stage graph - Optimal nary Search Trees - Longest common subsequence - Matrix-chainmultiplication – Travelling ulesperson Problem – Knapsack Problem and Memory functions.         sist of Exercise/Experiments:       1.         2. Write a program to find optimal binary search tree for a given list of keys.       3.         3. Solve the multi-stage graph to find shortest path using backward and forward approach       4.         4. Write a program to find the longest common subsequence       6+6         UNIT IV       GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT       6+6         reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem         st of Exercise/Experiments:       1.       Write a program to find minimum spanning tree using Prim's algorithm         2. Implement Kruskal's algorithm to find minimum spanning tree       3.       Write a program to solve maximum flow problem         UNIT V       BACKTRACKING AND BRANCH AND BOUND       6+6         NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound– LIFO Search and FIFO search - Assignment problem       Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling ulesman problem         st of Exercise/Experiments:       1.       Write a program to implement sum of	<b>4.</b> Write a program to sort the elements using heap sort		
UNIT III       DYNAMIC PROGRAMMING       6+6         ynamic programming – Principle of optimality – Floyd's algorithm – Multi stage graph - Optima       Optima         nary Search Trees - Longest common subsequence - Matrix-chainmultiplication – Travelling       1         idesperson Problem – Knapsack Problem and Memory functions.       1         sist of Exercise/Experiments:       1       Solve Floyd's algorithm         2.       Write a program to find optimal binary search tree for a given list of keys.       3         3.       Solve the multi-stage graph to find shortest path using backward and forward approach       4         4.       Write a program to find the longest common subsequence       6+6         IVIT IV       GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT       6+6         reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem       6+6         ist of Exercise/Experiments:       1       Write a program to find minimum spanning tree using Prim's algorithm       6+6         NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound – LIFO Search and FIFO search - Assignment problem       6+6         NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem – SubsetSum oblem. Stanch and Bound – LIFO Search and FIFO search - Assignment problem       6+6         Nerite a program to implement s			
ynamic programming – Principle of optimality – Floyd's algorithm – Multi stage graph - Optima inary Search Trees - Longest common subsequence - Matrix-chainmultiplication – Travelling idesperson Problem – Knapsack Problem and Memory functions. <b>ist of Exercise/Experiments:</b> <ol> <li>Solve Floyd's algorithm</li> <li>Write a program to find optimal binary search tree for a given list of keys.</li> <li>Solve the multi-stage graph to find shortest path using backward and forward approach</li> <li>Write a program to find the longest common subsequence</li> </ol> <b>UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT</b> 6+6 reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem <b>ist of Exercise/Experiments:</b> <ol> <li>Write a program to find minimum spanning tree using Prim's algorithm</li> <li>Implement Kruskal's algorithm to find minimum spanning tree</li> <li>Write a program to solve maximum flow problem</li> </ol> <b>UNIT V BACKTRACKING AND BRANCH AND BOUND</b> 6+6 NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound – LIFO Search and FIFO search - Assignment problem Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling desman problem <b>ist of Exercise/Experiments:</b> <ol> <li>Write a program to implement sum of subset problem.</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve the assignment problem using branch and bound technique</li> </ol> <b>Solve the assignment problem using branch and bound technique</b>	UNIT III DYNAMIC PROGRAMMING	6+6	
<ul> <li>nary Search Trees - Longest common subsequence - Matrix-chainmultiplication – Travelling desperson Problem – Knapsack Problem and Memory functions.</li> <li>st of Exercise/Experiments: <ol> <li>Solve Floyd's algorithm</li> <li>Write a program to find optimal binary search tree for a given list of keys.</li> <li>Solve the multi-stage graph to find shortest path using backward and forward approach</li> <li>Write a program to find the longest common subsequence</li> </ol> </li> <li>UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT [6+6]</li> <li>reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem</li> <li>st of Exercise/Experiments: <ol> <li>Write a program to find minimum spanning tree using Prim's algorithm</li> <li>Implement Kruskal's algorithm to find minimum spanning tree</li> <li>Write a program to solve maximum flow problem</li> </ol> </li> <li>UNIT V BACKTRACKING AND BRANCH AND BOUND [6+6]</li> <li>NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound– LIFO Search and FIFO search - Assignment problem Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling desman problem</li> </ul> <li>st of Exercise/Experiments: <ul> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to solve N-Queen problem.</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ul></li>	Dynamic programming – Principle of optimality – Floyd's algorithm – Multi stage graph - O	ptimal	
<ul> <li>Idesperson Problem – Knapsack Problem and Memory functions.</li> <li>Ist of Exercise/Experiments: <ol> <li>Solve Floyd's algorithm</li> <li>Write a program to find optimal binary search tree for a given list of keys.</li> <li>Solve the multi-stage graph to find shortest path using backward and forward approach</li> <li>Write a program to find the longest common subsequence</li> </ol> </li> <li>UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT 6+6</li> <li>Greedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem</li> <li>Ist of Exercise/Experiments: <ol> <li>Write a program to find minimum spanning tree using Prim's algorithm</li> <li>Implement Kruskal's algorithm to find minimum spanning tree</li> <li>Write a program to solve maximum flow problem</li> </ol> </li> <li>UNIT V BACKTRACKING AND BRANCH AND BOUND 6+60</li> <li>NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound– LIFO Search and FIFO search - Assignment problem Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling desman problem</li> </ul> st of Exercise/Experiments: <ol> <li>Write a program to solve N-Queen problem.</li> <li>Solve the assignment problem tsum of subset problem.</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ol>	Binary Search Trees - Longest common subsequence - Matrix-chainmultiplication - Trav	velling	
ist of Exercise/Experiments:         1. Solve Floyd's algorithm         2. Write a program to find optimal binary search tree for a given list of keys.         3. Solve the multi-stage graph to find shortest path using backward and forward approach         4. Write a program to find the longest common subsequence         UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT 6+6         reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem         ist of Exercise/Experiments:         1. Write a program to find minimum spanning tree using Prim's algorithm         2. Implement Kruskal's algorithm to find minimum spanning tree         3. Write a program to solve maximum flow problem         UNIT V BACKTRACKING AND BRANCH AND BOUND 6+6         NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound – LIFO Search and FIFO search - Assignment problem         Kat of Exercise/Experiments:         1. Write a program to implement sum of subset problem.         2. Write a program to solve N-Queen problem         Solve the assignment problem using branch and bound technique         4. Solve the assignment problem using branch and bound technique         4. Solve knapsack problem using branch and bound technique	Salesperson Problem – Knapsack Problem and Memory functions.		
<ol> <li>Solve Floyd's algorithm</li> <li>Write a program to find optimal binary search tree for a given list of keys.</li> <li>Solve the multi-stage graph to find shortest path using backward and forward approach</li> <li>Write a program to find the longest common subsequence</li> <li>UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT 6+6</li> <li>reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem</li> <li>ist of Exercise/Experiments:         <ol> <li>Write a program to find minimum spanning tree using Prim's algorithm</li> <li>Implement Kruskal's algorithm to find minimum spanning tree</li> <li>Write a program to solve maximum flow problem</li> </ol> </li> <li>UNIT V BACKTRACKING AND BRANCH AND BOUND 6+6</li> <li>NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound– LIFO Search and FIFO search - Assignment problem</li> <li>Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling desman problem</li> <li>ist of Exercise/Experiments:     <ul> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to solve N-Queen problem</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ul> </li></ol>	List of Exercise/Experiments:		
<ol> <li>Write a program to find optimal binary search tree for a given list of keys.</li> <li>Solve the multi-stage graph to find shortest path using backward and forward approach         <ul> <li>Write a program to find the longest common subsequence</li> <li>Write a program to find the longest common subsequence</li> </ul> </li> <li>UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT 6+6         <ul> <li>foredy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum                 ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem         </li> <li>ist of Exercise/Experiments:                  <ul> <li>Write a program to find minimum spanning tree using Prim's algorithm</li> <li>Implement Kruskal's algorithm to find minimum spanning tree</li> <li>Write a program to solve maximum flow problem</li> <li>UNIT V BACKTRACKING AND BRANCH AND BOUND 6+6</li></ul></li></ul></li></ol>	1. Solve Floyd's algorithm		
<ol> <li>Solve the multi-stage graph to find shortest path using backward and forward approach         <ul> <li>Write a program to find the longest common subsequence</li> <li>UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT 6+6</li> <li>reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem</li> </ul> </li> <li>st of Exercise/Experiments:         <ul> <li>Write a program to find minimum spanning tree using Prim's algorithm</li> <li>Implement Kruskal's algorithm to find minimum spanning tree</li> <li>Write a program to solve maximum flow problem</li> </ul> </li> <li>UNIT V BACKTRACKING AND BRANCH AND BOUND 6+6</li> <li>NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound – LIFO Search and FIFO search - Assignment problem</li> <li>Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling ilesman problem</li> <li>write a program to implement sum of subset problem.</li> <li>Write a program to solve N-Queen problem.</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ol>	2. Write a program to find optimal binary search tree for a given list of keys.		
approach         4. Write a program to find the longest common subsequence         UNIT IV       GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT       6+6         reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem         ist of Exercise/Experiments:       1.       Write a program to find minimum spanning tree using Prim's algorithm         2. Implement Kruskal's algorithm to find minimum spanning tree       3.       Write a program to solve maximum flow problem         UNIT V       BACKTRACKING AND BRANCH AND BOUND       6+6         NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound– LIFO Search and FIFO search - Assignment problem       Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling lesman problem         ist of Exercise/Experiments:       1.       Write a program to implement sum of subset problem.         2.       Write a program to solve N-Queen problem       4.         Solve the assignment problem using branch and bound technique       4.       50/04 Knapsack problem using branch and bound technique	3. Solve the multi-stage graph to find shortest path using backward and forward		
UNIT IV       GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT       6+6         reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem         ist of Exercise/Experiments:       1.         1.       Write a program to find minimum spanning tree using Prim's algorithm         2.       Implement Kruskal's algorithm to find minimum spanning tree         3.       Write a program to solve maximum flow problem         UNIT V       BACKTRACKING AND BRANCH AND BOUND       6+6         NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound– LIFO Search and FIFO search - Assignment problem       6+6         Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling desman problem       1         Write a program to implement sum of subset problem.       2         Write a program to solve N-Queen problem       3         Solve the assignment problem using branch and bound technique       4         Solve knapsack problem using branch and bound technique       4	<ul><li>4. Write a program to find the longest common subsequence</li></ul>		
reedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum ow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem ist of Exercise/Experiments: 1. Write a program to find minimum spanning tree using Prim's algorithm 2. Implement Kruskal's algorithm to find minimum spanning tree 3. Write a program to solve maximum flow problem <u>UNIT V</u> BACKTRACKING AND BRANCH AND BOUND 6+6 NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound– LIFO Search and FIFO search - Assignment problem Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling ilesman problem ist of Exercise/Experiments: 1. Write a program to implement sum of subset problem. 2. Write a program to solve N-Queen problem 3. Solve the assignment problem using branch and bound technique 4. Solve knapsack problem using branch and bound technique 4. Solve knapsack problem using branch and bound technique	UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT	6+6	
ist of Exercise/Experiments:         1. Write a program to find minimum spanning tree using Prim's algorithm         2. Implement Kruskal's algorithm to find minimum spanning tree         3. Write a program to solve maximum flow problem <b>UNIT V</b> BACKTRACKING AND BRANCH AND BOUND         0       6+6         NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound – LIFO Search and FIFO search - Assignment problem         Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling desman problem         ist of Exercise/Experiments:         1. Write a program to implement sum of subset problem.         2. Write a program to solve N-Queen problem         3. Solve the assignment problem using branch and bound technique         4. Solve knapsack problem using branch and bound technique	Greedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maxi Flow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem	mum-	
<ol> <li>Write a program to find minimum spanning tree using Prim's algorithm</li> <li>Implement Kruskal's algorithm to find minimum spanning tree</li> <li>Write a program to solve maximum flow problem</li> <li>UNIT V BACKTRACKING AND BRANCH AND BOUND 6+6</li> <li>NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound – LIFO Search and FIFO search - Assignment problem Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling desman problem</li> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to solve N-Queen problem</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ol>	List of Evoreise/Evperiments:		
<ol> <li>Write a program to find minimum spanning ace using Frinn's algorithm</li> <li>Implement Kruskal's algorithm to find minimum spanning tree</li> <li>Write a program to solve maximum flow problem</li> <li>Write a program to solve maximum flow problem</li> <li><b>UNIT V</b> BACKTRACKING AND BRANCH AND BOUND 6+6</li> <li>NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound – LIFO Search and FIFO search - Assignment problem</li> <li>Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling desman problem</li> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to solve N-Queen problem</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ol>	1 Write a program to find minimum spanning tree using Prim's algorithm		
<ol> <li>Implement Kruskar's algorithm to find minimum spanning tree</li> <li>Write a program to solve maximum flow problem</li> <li>UNIT V BACKTRACKING AND BRANCH AND BOUND 6+6</li> <li>NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound– LIFO Search and FIFO search - Assignment problem</li> <li>Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling desman problem</li> <li>ist of Exercise/Experiments:         <ol> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to solve N-Queen problem</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ol> </li> </ol>	2 Implement Kruskal's algorithm to find minimum spanning tree		
3. write a program to solve maximum now problem       6+6         UNIT V       BACKTRACKING AND BRANCH AND BOUND       6+6         NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum       oblem. SubsetSum         oblem. Branch and Bound– LIFO Search and FIFO search - Assignment problem       Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling         Iss of Exercise/Experiments:       1. Write a program to implement sum of subset problem.         2. Write a program to solve N-Queen problem         3. Solve the assignment problem using branch and bound technique         4. Solve knapsack problem using branch and bound technique	2. Implement Kruskar's algorithm to find minimum spanning tree		
UNIT V       BACKTRACKING AND BRANCH AND BOUND       6+6         NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum       oblem. Branch and Bound– LIFO Search and FIFO search - Assignment problem         Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling       Image: Complete and NP Hard Problems - Travelling         ist of Exercise/Experiments:       1. Write a program to implement sum of subset problem.       2. Write a program to solve N-Queen problem         3. Solve the assignment problem using branch and bound technique       4. Solve knapsack problem using branch and bound technique	3. Write a program to solve maximum now problem		
<ul> <li>NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum oblem. Branch and Bound– LIFO Search and FIFO search - Assignment problem Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling alesman problem</li> <li>ist of Exercise/Experiments: <ol> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to solve N-Queen problem</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ol> </li> </ul>	UNIT V BACKTRACKING AND BRANCH AND BOUND	6+6	
<ul> <li>boblem. Branch and Bound– LIFO Search and FIFO search - Assignment problem</li> <li>Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling</li> <li>alesman problem</li> <li><b>ist of Exercise/Experiments:</b> <ol> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to solve N-Queen problem</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ol> </li> <li>TOTAL:60PERIODS</li> </ul>	P, NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum	l	
<ul> <li>Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling alesman problem</li> <li>ist of Exercise/Experiments: <ol> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to solve N-Queen problem</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ol> </li> <li>TOTAL:60PERIODS</li> </ul>	Problem. Branch and Bound– LIFO Search and FIFO search - Assignment problem		
<ul> <li>ist of Exercise/Experiments: <ol> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to solve N-Queen problem</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ol> </li> <li>TOTAL:60PERIODS</li> </ul>	- Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling		
<ul> <li>ist of Exercise/Experiments:</li> <li>1. Write a program to implement sum of subset problem.</li> <li>2. Write a program to solve N-Queen problem</li> <li>3. Solve the assignment problem using branch and bound technique</li> <li>4. Solve knapsack problem using branch and bound technique</li> </ul>			
<ol> <li>Write a program to implement sum of subset problem.</li> <li>Write a program to solve N-Queen problem</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> </ol> TOTAL:60PERIODS	List of Exercise/Experiments:		
<ol> <li>Write a program to solve N-Queen problem</li> <li>Solve the assignment problem using branch and bound technique</li> <li>Solve knapsack problem using branch and bound technique</li> <li>TOTAL:60PERIODS</li> </ol>	1. Write a program to implement sum of subset problem.		
<ul> <li>3. Solve the assignment problem using branch and bound technique</li> <li>4. Solve knapsack problem using branch and bound technique</li> <li>TOTAL:60PERIODS</li> </ul>	2. Write a program to solve N-Queen problem		
4. Solve knapsack problem using branch and bound technique TOTAL:60PERIODS	3. Solve the assignment problem using branch and bound technique		
TOTAL:60PERIODS	4. Solve knapsack problem using branch and bound technique	105 -	
	TOTAL:60PER	IODS	

# **OUTCOMES:**

## Upon completion of the course, the students will be able to:

**CO1:**Solve mathematically the efficiency of recursive and non-recursive algorithms

**CO2:** Design and Analyse the efficiency of divide and conquer and transform and conquer algorithmic techniques

**CO3:**Implement and analyse the problems using dynamic programming

**CO4:**Solve the problems using and greedy technique and iterative improvementtechnique for optimization

**CO5:**Compute the limitations of algorithmic power and solve the problems usingbacktracking and branch and bound technique.

## **TEXTBOOKS:**

- 1. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Third Edition, Pearson Education, 2012.
- 2. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, Computer Algorithms/ C++, Second Edition, Universities Press, 2019.

## **REFERENCES:**

- 1. Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, Introduction to Algorithms, Third Edition, PHI Learning Private Limited, 2012.
- 2. S. Sridhar, Design and Analysis of Algorithms, Oxford university press, 2014.
- 3. http://nptel.ac.in/

## LIST OF EQUIPMENTS: 🔺

Standalone PC with C/C++/Java

2205204		<b>OPERATING SYSTEMS</b>	L	Τ	Р	С
2205304		(Common to CSE, IT and AIML)	2	0	2	3
OBJECTIVES	S:					
The Co	urse will	enable learners to:				
• H	Explain th	ne basic concepts of operating systems and process.				
• I	Discuss th	rreads and analyse various CPU scheduling algorith	ms.			
• I	Describe	the concept of process synchronization and deadloc	ks.			
• 4	Analyse v	arious memory management schemes.				
• I	Describe	I/O management and file systems.				
UNIT I	INTROI	DUCTION TO OPERATING SYSTEMS AND P	ROCE	SSE	S	6+6
Introduction: C	Computer	system organization - architecture – Resource mana	gemen	t - Pr	otectio	on and
Security – Vir	tualizatio	n - Operating System Structures: Services - User	and C	)pera	ting-S	ystem
Interface - Syst	tem Calls	- System Services - Design and Implementation - H	Buildin	g and	l Boot	ing an
Operating Syst – Inter process	em – Pro	cesses: Process Concept - Process Scheduling - C	peratio	ons o	n Pro	cesses
Communication	n - IPC ir	h Shared-Memory Systems - IPC in Message-Passin	g Syste	ems		

## List of Exercise/Experiments:

1. Basic Unix file system commands such as ls, cd, mkdir, rmdir, cp, rm, mv, more, lpr,man, grep, sed, etc..

- 2. Programs using Shell Programming.
- **3**. Implementation of Unix System Calls.
- 4. Implementation of IPC using message queue
  - a. Get the input data (integer value) from a process called sender
  - b. Use Message Queue to transfer this data from sender to receiver process
  - c. The receiver does the prime number checking on the received data

d. Communicate the verified/status result from receiver to sender process, this status should

be displayed in the Sender process.

Note: Simultaneously execute two or more processes. Don't do it as a single process

## UNIT II | THREADS AND CPU SCHEDULING

Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts – Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling

## List of Exercise/Experiments:

1. Write a program to implement the following actions using pthreads

a. Create a thread in a program and called Parent thread, this parent thread creates another thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes

b. Create a thread in the main program, this program passes the 'count' as arguments to that thread function and this created thread function has to print your name 'count' times.

2. Write C programs to implement the various CPU Scheduling Algorithms.

# UNIT III PROCESS SYNCHRONISATION AND DEADLOCKS

6+6

6+6

Process Synchronization: The critical-section problem – Peterson's Solution, Synchronization hardware, Mutex locks, Semaphores, monitors - Classic problems of synchronization: Bounded Buffer Problem - Reader's & Writer Problem, Dinning Philosopher Problem. Deadlock: System model - Deadlock characterization, Methods for handling deadlocks - Deadlock prevention - Deadlock avoidance - Deadlock detection - Recovery from deadlock.

# List of Exercise/Experiments:

1. Process Synchronization using Semaphores. A shared data has to be accessed by two categories of processes namely A and B. Satisfy the following constraints to access the data without any data loss.

- a. When a process A1 is accessing the database another process of the same category is permitted.
- b. When a process B1 is accessing the database neither process A1 nor another 74 processB2 is permitted.
- **c.** When a process A1 is accessing the database process B1 should not be allowed toaccess the database. Write appropriate code for both A and B satisfying all the above constraints using semaphores.

Note: The time-stamp for accessing is approximately 10 sec.

2. Bankers Algorithm for Deadlock Avoidance

# UNIT IV | MEMORY MANAGEMENT

6+6

Memory Management: Contiguous Memory Allocation - Paging - Structure of the Page Table -
Swapping - Virtual Memory: Demand Paging – Copy-on write – Page Replacement – Allocation of
frames – Thrashing – Memory Compression
List of Exercise/Experiments:
1. Analysis and Simulation of Memory Allocation and Management Techniques
i. First Fit ii. Best Fit iii. Worst Fit
2. Implementation of Page Replacement Techniques
i. FIFO ii. LRU iii. Optimal page replacement
UNIT VSTORAGE MANAGEMENT6+6
Mass Storage Structure: Overview of Mass Storage Structure- HDD scheduling – Swap Space
Management, I/O systems: I/O Hardware, Application I/O interface, Kernel I/O Subsystem, File
System Interface: File Concept – Access Methods – Directory Structure
Protection, File-System Implementation: File-System Structure- File-System Operations -
Directory Implementation - Allocation Methods - Free-Space Management,
- Case Study-Linux
List of Exercise/Experiments:
1. Simulation of File Allocation Techniques
I. Sequential ii. Linked list iii. indexed
2. Implementation of File Organization Strategies
Single level directory II. I wo level directory III. Hierarchical level directory
OUTCOMES.
UTCOMES: Upon completion of the course, the students will be able to: CO1:Implement the
basic concepts of operating systems and process. CO2: Analyse various CPU
scheduling algorithms and thread mechanism <b>CO3</b> . Implement the concepts of
process synchronization and deadlocks <b>CO4</b> : Design various memory
management schemes to given situation
<b>CO5:</b> Implement various I/O and file management techniques.
TEXTBOOKS:
1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating SystemConcepts" II,
10th Edition. John Wiley and Sons Inc., 2018.
2. Andrew S Tanenbaum, "Modern Operating Systems", Pearson, 5th Edition, 2022
New Delhi.
REFERENCES:
1. William Stallings, "Operating Systems: Internals and Design Principles", 7th Edition, Prentice
Hall, 2018.
2. Achyut S.Godbole, Atul Kahate, "Operating Systems", McGraw Hill Education, 2016.

22 A M301	ARTIFICIAL INTELLIGENCE	L	Τ	Р	С		
ZZANIJUI		3	0	2	4		
<b>OBJECTIVES:</b>							
To under	stand the various Intelligent agents and search strategies in AI.						
To learn	about different problem-solving strategies using heuristic function	on.					
To learn	about knowledge-based agents and first order logics.						
To under	• To understand knowledge representation and planning.						
• To know about the expert system.							
UNIT I         ARTIFICIAL INTELLIGENCE AND INTELLIGENT AGENTS         9+6							
<b>.</b>							

Introduction to AI –Foundations of Artificial Intelligence - Intelligent Agents – Agents and Environments - Concept of rationality – Nature of environments – Structure of agents - Problem

solving agents – Example Problems - Search Algorithms – Uninformed Search Strategies. Lab Programs:

- 1. Implement basic search strategies 8-Puzzle, 8 Queens problem.
- 2. Implement Breadth First Search & Depth first Search Algorithm
- 3. Implement Water Jug problem.

4. Solve Tic-Tac-Toe problem.

UNIT II PROBLEM SOLVING

9+6

9+6

9+6

9+6

Heuristic search strategies – heuristic functions- Game Playing – Mini-max Algorithm - Optimal decisions in games – Alpha-beta search –Monte-Carlo search for Games - Constraint satisfaction problems – Constraint propagation – Backtracking search for CSP – Local search for CSP – Structure of CSP

# Lab Programs:

- 1. Implement A* and memory bounded A* algorithms.
- 2. Implement Minimax algorithm & Alpha-Beta pruning for game playing.
- 3. Constraint Satisfaction Problem
- 4. Mini Project Chess. Sudoku.

# UNIT III LOGICAL AGENTS

Knowledge-based agents – Logic - Propositional logic – Propositional theorem proving – Propositional model checking – Agents based on propositional logic

First-Order Logic – Syntax and semantics – Using First-Order Logic - Knowledge representation and engineering – Inferences in first-order logic – Propositional Vs First-Order Inference - Unification and First-Order Inference - Forward chaining – Backward chaining – Resolution.

# Lab Programs:

- 1. Implement Unification algorithm for the given logic.
- 2. Implement forward chaining and backward chaining using Python.

UNIT IV KNOWLEDGE REPRESENTATION AND PLANNING

Ontological engineering – Categories and objects – Events – Mental objects and modal logic – Reasoning systems for categories – Reasoning with default information

Classical planning – Algorithms for classical planning – Heuristics for planning – Hierarchical planning – non-deterministic domains – Time, schedule, and resources – Analysis

# Lab Programs:

- 1. Implementation of object detection.
- 2. Implement classical planning algorithms.

# UNIT V LEARNING AND EXPERT SYSTEMS

Forms of Learning – Developing Machine Learning systems – Statistical Learning - Deep Learning: Simple feed-forward network - Neural Networks – Reinforcement Learning: Learning from rewards – Passive and active Reinforcement learning.

Expert Systems: Functions – Main structure – if-then rules for representing knowledge – developing the shell – Dealing with uncertainty

# Lab Programs:

- 1. Develop an Expert system.
- 2. Mini-Project Develop Machine Learning based classification Models.

## **TOTAL: 45+30 = 75 PERIODS**

# **OUTCOMES:**

# At the end of this course, the students will be able to:

CO1: Illustrate the structure of agents and to implement various Intelligent agents.

CO2: Apply search strategies in problem solving and game playing using heuristic function.

CO3: Implement logical agents and first-order logic problems.

CO4: Apply problem-solving strategies with knowledge representation mechanism for solving hard problems.

CO5: Demonstrate the basics of expert systems and to develop models using machine learning techniques.

## TEXT BOOKS:

- 1. Peter Norvig and Stuart Russel, Artificial Intelligence: A Modern Approach, Pearson, 4th Edition, 2020.
- 1. Bratko, Prolog: Programming for Artificial Intelligencel, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011.

## **REFERENCES:**

- 1. Elaine Rich, Kevin Knight and B.Nair, Artificial Intelligence 3rd Edition, McGraw Hill, 2017.
- 2. Melanie Mitchell, Artificial Intelligence: A Guide for Thinking Humans. Series: Pelican Books, 2020
- 3. Ernest Friedman-Hill, Jess in Action, Rule-Based Systems in Java, Manning Publications, 2003
- 4. Nils J. Nilsson, The Quest for Artificial Intelligence, Cambridge University Press, 2009.
- 5. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems,1st Edition by Patterson, Pearson, India, 2015.
- 6. NPTEL Courses:
  - a. An Introduction to Artificial Intelligence <u>https://onlinecourses.nptel.ac.in/noc23_cs05/preview</u>
    - b. Artificial Intelligence: Knowledge Representation And Reasoning https://onlinecourses.nptel.ac.in/noc23_cs09/preview

Universal Human Values II: Understanding Harmony	L	Т	Р	С		
	2	2	0	3		
<b>OBJECTIVES:</b>						
• Development of a holistic perspective based on self-exploration about them	nsel	ves				
(human being), family, society and nature/existence.						
• Understanding (or developing clarity) of the harmony in the human being,	fan	nily,				
society and nature/existence						
Strengthening of self-reflection.						
<ul> <li>Development of commitment and courage to act.</li> </ul>						
COURSE TOPICS:						
The course has 28 lectures (2 lecture hours) and 14 practice sessions (2 Tutorial hour	r) i	n 5 I	Unit	s:		

UNIT I	<b>Course Introduction - Need, Basic Guidelines, Content and Process</b>
	for Value Education

- Purpose and motivation for the course, recapitulation from Universal Human Values-I
- Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- Continuous Happiness and Prosperity- A look at basic Human Aspirations
- Right understanding, Relationship and Physical Facility- The basic requirements for fulfillment of aspirations of every human being with their correct priority
- Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- Method to fulfil the above human aspirations: Understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

UNIT II	Understanding Harmony in the Human Being – Harmony in Myself!

- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- Understanding the body as an instrument of 'I' (I being the doer, seer and enjoyer)
- Understanding the characteristics and activities of 'I' and harmony in 'I'
- 'Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss programs for ensuring health vs dealing with disease

UNIT III	Understanding Harmony in the Family and Society- Harmony in
	Human-Human Relationship

- Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- Understanding the meaning of Trust; Difference between intention and competence
- Understanding the meaning of Respect; Difference between respect and differentiation; the other salient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, Fearlessness (trust) and co-existence as comprehensive Human Goals
- Visualizing a universal harmonious order in society- Undivided society, Universal orderfrom family to world family.

Include practice sessions to reflect on relationships in family, hostel and institutes extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

Understanding the harmony in nature						
• Interconnectedness and mutual fulfilment among the four orders of nature-recyclability and						
self-regulation in nature						
• Understanding Existence as Co-existence of mutually interacting units in all-pervasive space						
Holistic perception of harmony at all levels of existence.						
• Include practice sessions to discuss human being as cause of imbalance in nature (film						
"Home" can be used), pollution, depletion of resources and role of technology etc.						
UNIT V Implications of the above Holistic Understanding of Harmony on Professional Ethics						
Natural acceptance of human values						
Definitiveness of Ethical Human Conduct						
• Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal						
Order <b>ENGINEERING GULLEUR</b>						
• Competence in professional ethics: a. Ability to utilize the professional competence for						
augmenting universal human order b. Ability to identify the scope and characteristics of						
people friendly and eco-friendly production systems, c. Ability to identify and develop						
appropriate technologies and management patterns for above production systems.						
• Case studies of typical holistic technologies, management models and production						
systems.						
• Strategy for transition from the present state to Universal Human Order: a. At the level						
of individual: as socially and ecologically responsible engineers, technologists and						
managers b. At the level of society: as mutually enriching institutions and organizations						
• Sum up.						
Include practice exercises and case studies will be taken up in practice (tutorial) sessions eg. To discuss the conduct as an angineer or scientist etc.						
discuss the conduct as an engineer of scientist etc.						
OUTCOMES:						
CO1: Would become more aware of themselves, and their surroundings (family society nature).						
CO2: Would become more responsible in life, and in handling problems with sustainable						
solutions, while keeping human relationships and human nature in mind						
CO3: Would have better critical ability						
CO4: Would become sensitive to their commitment towards what they have understood (human						
values, human relationship, and human society).						
CO5: Would be able to apply what they have learnt to their own self in different day-to-day						

settings in real life, at least a beginning would be made in this direction.

## **TEXT BOOK:**

 R R Gaur, R Sangal, G P Bagaria, "Human Values and Professional Ethics", Excel Books, New Delhi, Second Edition 2019.

## **REFERENCES:**

- 1. A Nagaraj, "Jeevan Vidya: Ek Parichaya", Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. E. F Schumacher, "Small is Beautiful", Vintage classics, London, 1993.
- 3. A.N. Tripathi, "Human Values", New Age Intl. Publishers, New Delhi, Third Edition 2020.
- 4. Maulana Abdul Kalam Azad, "India Wins Freedom", Oriental blackswan private limited, Hyderabad, 2020.
- 5. Mahatma Gandhi, "Hind Swaraj or Indian Home Rule", Maheswari Publications, Delhi 2020.
- 6. Romain Rolland, "The life of Vivekananda and the universal gospel", Publication house of Ramakrishna Math, Kolkata, Thirty second edition 2018.
- 7. Romain Rolland, "Mahatma Gandhi: The man who become one with the universal being ", Srishti Publishers & Distributors, New Delhi, Sixth Edition 2013.
- 8. Heaton, Dennis P. "The story of stuff." (2010): 553-556.

அறிவே

- 9. Gandhi, Mohandas Karamchand, "The story of my experiments with truth: An autobiography", Om Books International, 2018.
- 10. Andrews, Cecile, "Slow is beautiful: new visions of community, leisure, and joie de vivre", New society publishers, 2006.
- 11. Kumarappa, Joseph Cornelius, "The economy of permanence. CP", All India Village Industries Assn., 1946.

are are

54

22GE311	PRODUCT DEVELOPMENT LAB – III	L	Т	Р	С
22GE311	(Common to All Branches)	0	0	2	1

## **OBJECTIVES:**

## The Course will enable learners to:

- To provide an adequate understanding of project/product concepts and creative design process.
- Create a methodology to develop solutions to complex systems.

The students can form a team of 3 or 4 to work on the approved topic by the faculty in-charge. All approved product/process topics should have the following stages as listed under activities. The faculty in-charge conducts a periodic review to endorse the work process and during the review, the faculty shall provide suggestions/ideas to improvise the project towards completion. An interim report (consisting of literature, photographs, proof of the work done, etc..) for all listed activities should be submitted by the team during periodic review for evaluation. A final project report is required at the end of the semester for evaluation.

## LIST OF ACTIVITIES:

- 1. Develop the design stage for a product from the concept.
  - Researching it in-depth.
  - Ideating possible solutions.
  - Selecting a promising solution.
  - Make a mock-up model
  - Comprehend the design features of the mock-up model.

- 2. Evaluate the pros-cons of the mock-up (& with the existing product).
- 3. Generate the Design for Manufacturing and Assembly (DFMA) process route for the product with necessary interdisciplinary collaborations.

## **TOTAL: 30 PERIODS**

## **OUTCOMES:**

## Upon completion of the course, the students will be able to:

- CO1 Enhance their skills in design concepts, rules and procedures.
- CO2 Develop their cognitive strategy to think, organize, learn and behave.
- CO3 Demonstrate the ability to provide conceptual design strategies for a product.
- CO4 Describe the procedure for designing a Mock-up model.
- CO5 Recognize and apply appropriate interdisciplinary and integrative strategies for solving complex problems

# LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

S.No	Equipment Name	Quantity
1	CNC Router	1 No
2	3D Printer	1 No
3	3D Scanner	1 No
4	Laser cutting Machine	1 No
5	Centre lathe	2 Nos
6	Arc welding transformer with cables and holders	2 Nos
7	Plumbing tools	2 Sets

8	Carpentry tools	2 Sets
9	Multimeter	10 Nos
10	Drilling Machine	1 No
11	Solder Stations	5 Sets
12	Desoldering Machine	1 No
13	PCB Milling Machine	1 No
14	Variable Power Supply	1 No
15	Electronic Components like Resistors, Transistors, Diode, Inductor, Capacitor, etc.	10 Sets
16	Personal Desktop Computers	30 Nos
17	3D Modelling software – Creo/ AutoCAD/ etc.,	30 Licence

22CS311	APTITUDE AND CODING SKILLS – I	L	Т	Р	С
	(Common to All Branches)	0	0	2	1

## **OBJECTIVES:**

## The Course will enable learners to:

- Develop vocabulary for effective communication and reading skills.
- Build the logical reasoning and quantitative skills.
- Develop error correction and debugging skills in programming.

## List of Exercises:

# 1. English – Phase I

Vocabulary: Synonyms, Antonyms, Grammar: Subject-Verb Agreement, Tenses and Articles, Prepositions and Conjunctions, Speech and Voices, Comprehension: Inferential and Literal Comprehension, Contextual Vocabulary, Comprehension ordering

# 2. Logical Reasoning – Phase I

Deductive Reasoning: Coding deductive logic, Directional sense, Blood relations, Objective Reasoning, Selection decision tables, Puzzles, Inductive reasoning: Coding pattern and Number series pattern recognition, Analogy and Classification pattern recognition, Abductive Reasoning: Logical word sequence, Data sufficiency

# 3. Quantitative Ability - Phase I

Basic Mathematics: Divisibility, HCF and LCM, Numbers, decimal fractions and power, Applied Mathematics: Profit and Loss, Simple and Compound Interest, Time, Speedand Distance, Engineering Mathematics: Logarithms, Permutation and Combinations, Probability

## 4. Automata Fix – Phase I

Logical, Compilation and Code reuse

## **TOTAL: 30 PERIODS**

## **OUTCOMES:**

# Upon completion of the course, the students will be able to:

**CO1:** Develop vocabulary for effective communication and reading skills.

**CO2:** Build the logical reasoning and quantitative skills.

**CO3:** Develop error correction and debugging skills in programming.

	PROBABILITY AND STATISTICS	L	Т	Р	С			
22MA401	(Common to CSE, IT and AIML)	3	0	2	4			
OBJECTIVES								
The Course will enable learners to:								
<ul> <li>Provide the necessary basic concepts of random variables and to introduce somestandard</li> </ul>								
distributi	ons.							
• Test the hypothesis for small and large samples.								
Introduce	Introduce the concepts of Analysis of Variances.							
• Understa	Understand the concept of statistical quality control.							
UNIT I	LOGIC AND PROOFS				15			
Basic probab	ility definitions- Independent events- Conditional	probab	ility (	revis	it) - Random			
variable - Dis	crete and continuous random variables - Moments -	Mome	nt ger	nerati	ng functions -			
Binomial, Poi	sson, Geometric, Uniform, Exponential and Normal c	listribu	tions.					
List of Exerc	ise/Experiments using R Programming:							
1 Finding oo	ditional probability							
Finding mean	variance and standard deviation							
UNIT II	TWO-DIMENSIONAL RANDOM VARIABLES	)			15			
Joint distribut	ions - Marginal and conditional distributions - Cova	riance -	· Corre	elatio	n andlinear			
regression - T	ransformation of random variables.							
List of Exerc	ise/Experiments using R Programming:							
1. Finding r	narginal density functions for discrete random variab	les.						
2. Calculati	ng correlation and regression.							
UNIT	TESTING OF HYPOTHESIS				15			
III					10			
Sampling dist	ributions - Estimation of parameters - Statistical hypo	thesis -	Large	e samj	ple tests based			
on Normal dis	tribution for single mean and difference of means - Te	sts base	ed on t	t and l	F distributions			
for mean and	variance - Chi-square test- Contingency table (test for	r indep	endent	t) - G	oodness of fit.			
List of Exerci	se/Experiments using R Programming:							
<b>1.</b> Testing C	f hypothesis for given data using $L$ - test.							
<b>Z</b> . resting 0	r hypothesis for given data using t - test.	- 10						
UNIT IV	DESIGN OF EXPERIMENTS	hu			15			
One way and	Two-way classifications - Completely randomized	design	- Ra	ndom	ized			
blockdesign -	blockdesign - Latin square design.							
_								
List of Exercise/Experiments R Programming:								
1. Perform	one-way ANOVA test for the given data.							
	STATISTICAL OUALITY CONTROL				15			
					15			
Control charts	for measurements ( $X$ and $R$ charts) - Control charts	or attri	hutes	(n c	andnncharts)			
- Tolerance lin	nits.	or utill	Juios	(P, C)	ananpenaris)			

List of Exercise/Experiments using R Programming:

- Interpret the results for X-Chart for variable data.
   Interpret the results for R-Chart for variable data.

OUTCOMES						
Upon complet	ion of the course, the students will be able to:					
	hate the sources of standard distributions.	-1				
CO3: Apply the concept of testing the hypothesis						
<b>CO3:</b> Apply the concept of testing the hypothesis.						
<b>CO4:</b> Implement the concept of analysis of variance for various experimental designs.						
TEXTROOK						
1. R.A. Jo	hnson, I. Miller and I. Freund. "Miller and Freund's Probability at	ndS	tatis	tics	for	
Engine	eers". Pearson Education. Asia. 8th Edition. 2015.	140	cacito		101	
2. I.S. M	ilton and I.C. Arnold "Introduction to Probability and Statist	ics"	T	ata		
McGra	awHill, 4th Edition, 2017.		,	iii		
REFERENCE	S:					
1. J.L. De	vore, "Probability and Statistics for Engineering and the Sciences	s",C	leng	age		
Learni	ng, New Delhi, 9th Edition, 2016.					
2. S.M.	Ross, "Introduction to Probability and Statistics for H	Engi	inee	rs a	nd	
Scient	ists", 6th Edition, Elsevier, 2020.			_		
3. M.R.	Spiegel, J. Schiller and R.A. Srinivasan, "Schaum's Outline of The	neor	y a	nd		
Proble	ms of Probability and Statistics", Tata McGraw Hill Edition, 2004.		_			
4. R.E.W	alpole, R.H.Myers, S.L. Myers and K.Ye, "Probability and Statist	tics	for			
Engine	eers and Scientists". Pearson Education, Asia, 9th Edition, 2012					
			-		~	
22.4 M401	NEURAL NETWORKS	L	Т	P	C	
22/101401		2	0	2	3	
OBJECTIV	ES:					
• To un	derstand the biological neural network and to model equivalent neu	ron	mo	dels		
• To un	derstand the architecture learning algorithms	1011	1110		•	
• To un	ow the issues of various feed forward and feedback neural network	c				
• To Ki	in doop insight about Poltzmonn Machine Learning	5.				
• To ga	nlore Autoencoders and Honfield Nata					
			-		6.6	
UNITI	INTRODUCTION				0+0	
A Neural Ne	twork, Human Brain, Models of a Neuron, Neural Networks view	wed	as	Dire	ected	
Graphs, Networks	vork Architectures, Knowledge Representation, Artificial Intellige	ence	an	d N	eural	
Learning Pro	cess: Error Correction Learning Memory Based Learning Hel	hhia	n I	ear	ning	
Competitive	Boltzmann Learning, Credit Assignment Problem Memory Ada	ntio	n S	tatio	stical	
Nature of the	Learning Process	puo	n, o	'uun	stical	
A simple exa	mple of learning – Three types of Learning – Types of Neural Netwo	nrk /	Arch	itec	tures	
Lah Program	ns.	1 K 1	nen	nice	luics	
1 Study	of IAX and its installation					
2 Perfor	m matrix operations					
3 Plot n	nultiple curves in single plot					
$\frac{3.1101}{4}$ Plot A	activation function used in neural network					
5 Create	a simple neural network					
UNIT II	PERCEPTRONS				6+6	
A dantive Filt	aring Problem Unconstrained Organization Techniques Linear Leas	et C.	ייסוור	ρFi	ltere	
Least Moon	Square Algorithm Learning Curves Learning Date Anneal	51 30 n a	quar Tac	c Fl hni		
Derceptron	Convergence Theorem Delation Detween Dercontrop and Devec			inill(	for a	
Gaussian En	vironment A geometrical view of Decontrops What perce	Uld ntre	13311 mg	000	t do	
Multilavor T	Percentron: Back Propagation Algorithm VOD Problem Us	puo	ice		i uu	
winnayer f	erception. Dack riopagation Algorithm AOK Problem, Hel	1115	ucs,	U	ուրու	

Representation and Decision Rule, Computer Experiment, Feature Detection

# Lab Programs:

- 1. Create a Perceptron.
- 2. Pattern Classification using Perceptron network.
- 3. Build a neural network by implementing the Single-layer Perceptron. Test it using appropriate data sets.

# UNIT III BACK PROPAGATION

6+6

6+6

Learning the weights of a linear neuron-error surface – learning weights of logistic output neuron-Back Propagation and Differentiation, Hessian Matrix, Generalization, Cross Validation, Network Pruning Techniques, Virtues and Limitations of Back Propagation Learning, Accelerated Convergence, Supervised Learning

# Lab Programs:

- 1. Implement Multi-layer Perceptron and test the same using appropriate data sets.
- 2. Create a Back Propagation Feed-forward neural network.
- 3. Implement and train a Bayesian Neural network.

# UNIT IV BOLTZMANN MACHINE LEARNING

How a Boltzmann machine models data - Restricted Boltzmann machine- example of RBM learning-Collaborative filtering-learning layers of features by stacking RBMs.

## Lab Programs:

- 1. Model real valued data with RBM.
- 2. Demonstrate looking for patterns in gene expression profiles in baker's yeast.

# UNIT V AUTOENCODERS AND HOPFIELD NETS

6+6

TOTAL: 30+30 = 60 PERIODS

From PCA to autoencoders-Deep autoencoders-document retrieval- semantic hashing – learning binary codes for image retrieval- shallow autoencoders

Hopfield Network – Hopfield Models- Hopfield nets with hidden units

# Lab Programs:

- 1. Design a Hopfield Network which stores 4 vectors
- 2. Image retreival
- 3. Mini Project Face recognition

# **OUTCOMES:**

# At the end of this course, the students will be able to:

- CO1: Understand the similarity of Biological networks and Neural networks
- CO2: Perform the training of neural networks using various learning rules.
- CO3: Understand the concepts of forward and backward propagations.
- CO4: Explain Boltzmann Machine Learning.
- CO5: Construct Hopfield nets and learn autoencoders.

# **TEXT BOOKS:**

- 1. Neural Networks a Comprehensive Foundations, Simon S Haykin, PHI Ed
- 2. Introduction to Artificial Neural Systems Jacek M. Zurada, JAICO Publishing House Ed. 2006.
- 3. Christopher M Bishop, Pattern Recognition and Machine Learning. Springer. 2011.
- 4. Geoffrey Hintonand Terrence J. Sejnowski, Unsupervised Learning: Foundations of Neural Computation.

# **REFERENCES:**

- 1. Neural Networks for Machine Learning Geoffrey E. Hinton, UoFT <u>https://www.youtube.com/playlist?list=PLLssT5z_DsK_gyrQ_biidwvPYCRNGI3iv</u>
- 2. Neural Networks in Computer Intelligence, Li Min Fu TMH 2003
- 3. Neural Networks -James A Freeman David M S Kapura Pearson Ed., 2004.
- 4. Artificial Neural Networks B. Vegnanarayana Prentice Hall of India P Ltd 2005

## MACHINE LEARNING ESSENTIALS

L	Т	Р	С
3	0	2	4

#### **OBJECTIVES:**

- To discuss the basics of Machine Learning and model evaluation.
- To study dimensionality reduction techniques. •
- To understand the various classification algorithms.
- To elaborate on unsupervised learning techniques.
- To design and analyze machine learning experiments.

#### UNIT I **INTRODUCTION**

9+6

Machine Learning – Types – Applications – Preparing to Model – Activities – Data – Exploring structure of Data – Data Quality and Remediation – Data Pre-processing – Modelling and Evaluation: Selecting a Model - Training a Model - Model representation and Interpretability -Evaluating Performance of a Model – Improving Performance.

## Lab Programs:

- 1. Implementation of Candidate Elimination algorithm
- 2. Implementation of ML model evaluation techniques (R-Squared/Adjusted R-Squared/Mean Absolute Error/Mean Squared Error)
- 3. Implementation of ML model evaluation techniques (Confusion Matrix/F1 Score/AUC-ROC Curve)

#### **UNIT II** FEATURE ENGINEERING AND DIMENSIONALITY REDUCTION 9+6

Feature Engineering – Feature Transformation – Feature Subset Selection - Principle Component Analysis – Feature Embedding – Factor Analysis – Singular value decomposition and Matrix Factorization – Multidimensional scaling – Linear Discriminant Analysis – Canonical Correlation Analysis – Isomap – Locally linear Embedding – LaplacianEigenmaps.

#### Lab Programs:

- 1. Write python code to identify feature co-relations (PCA)
- 2. Interpret Canonical Covariates with Heatmap
- 3. Feature Engineering is the way of extracting features from data and transforming them into formats that are suitable for Machine Learning algorithms. Implement python code for Feature Selection/Feature Transformation/Feature Extraction.
- 4. Mini Project Feature Subset Selection

#### UNIT III SUPERVISED LEARNING

Linear Regression - Relation between two variables - Steps - Evaluation - Logistic Regression -Decision Tree - Algorithms - Construction - Classification using Decision Tree - Issues - Rulebased Classification – Pruning the Rule Set – Support Vector Machines – Linear SVM – Optimal Hyperplane – Radial Basis Functions – Naïve Bayes Classifier – Bayesian Belief Networks.

#### Lab Programs:

- 1. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select the appropriate data set for your experiment and draw graphs.
- 2. Implement and demonstrate the working of the decision tree-based ID3 algorithm
- 3. Build a Simple Support Vector Machines using a data set

#### **UNIT IV UNSUPERVISED LEARNING**

Clustering - Types - Applications - Partitioning Methods - K-means Algorithm - K-Medoids -Hierarchical methods – Density based methods DBSCAN – Finding patterns using Association Rules – Hidden Markov Model.

## Lab Programs:

- 1. Implement a k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions
- 2. Implement market based analysis using association rules
- 3. Mini Project using Clustering analysis.

9+6

9+6

UNIT V	DESIGN AN	D ANALYSIS	OF	MACHINE	LEARNING	9+6
	EXPERIMENTS	5				
Guidelines	for Machine Learnin	ng Experiments – 0	Cross V	alidation and R	esampling Metho	ods –
Assessing a	Classification Algo	orithm – Comparis	on – Ty	vo algorithms, i	multiple algorith	ms –
Multivariate	e Tests					
Lab Progr	ams:					
1. Con	struct a Bayesian net	work considering r	nedical	data. Use this m	odel to demonstr	ate
the o	liagnosis of heart pa	tients using a stand	ard Hear	rt Disease Data S	Set	
2. App	ly EM algorithm to	cluster a set of data	. Use th	e same dataset f	or clustering usi	ng k-
Mea	ns algorithm. Compa	are the results of the	ese two	algorithms.	5.20 <b>55</b> DEDI	
				<b>TOTAL: 4</b>	5+30 = 75 PERI	ODS
OUTCOM	ES:					
At the end	of this course, the s	tudents will be ab	le to:			
CO1: Expla	in the basics of Mac	hine Learning and	model e	valuation.		
CO2: Study	dimensionality redu	ction techniques.				
CO3: Unde	rstand and implement	nt various classifica	tion alg	orithms.		
CO4: Unde	rstand and implement	nt various unsuperv	ised lear	rning techniques		
CO5: Desig	n and analyze mach	ine learning experiment	nents.			
TEXT BO	TEXT BOOKS:					
1 Saik	atDutt Subramania	Chandramouli A	mit Kur	nar Das Machi	ne Learning Pea	rson
2019 (Unit 1 – Chap 1 2 3/ Unit 2 – Chap 4 / Unit 4 – Chap 9)						
2. Ethem Alpavdin, Introduction to Machine Learning, Adaptive Computation and Machine						
Learning Series, Third Edition, MIT Press, 2014. (Unit 2 – Chap 6 / Unit 4 – chap 8.2.3 /						
Unit 5 – Chap 19)						
REFEREN	CES:	SU X	$\mathbf{X}$			
1. Anu	radhaSrinivasaragha	van.Vincy Joseph.	Machine	e Learning, First	Edition, Wiley, 2	2019.
(Uni	t 3 – Chap 7,8,9,10,	11 / Unit 4 – 13, 11	.4, 11.5	,12)		
2. Pete	r Harrington, "Mach	ine Learning in Ac	tion", M	lanning Publicat	ions, 2012.	
3. Step	hen Marsland, "Mae	chine Learning – A	n Algo	rithmic Perspect	ive", Second Ed	ition,
Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.						
4. Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013.						
Christop	oh Molnar, "Interpret	able Machine Lear	ning - A	Guide for Maki	ng Black Box M	odels
Exp	lainable", Creative	Commons License	, 2020.			
5. Chri	stoph Molnar, "Inte	rpretable Machine	Learnir	ng - A Guide fo	r Making Black	Box
Mod	lels Explainable", Ci	eative Commons L	icense,	2020.		
6. NPT	EL Courses:			117		
Intro	oduction to Machine	Learning - https://c	onlineco	urses.nptel.ac.in	/noc23_cs18/pre	view
			č	20		

22CS402	WEB DEVELOPMENT FRAMEWORKS	L	Т	Р	C
		3	0	2	4
OBIECTI	/FS•				
The Course	ves. will anable learners to:				
	olify website development using Springhoot as server si	de tec	hnol	ories	
	d single page applications using <b>DEACT</b> as a rouseble I			Jgies.	
• Bull	a single page applications using KLACT as a reusable C		ipone	int	
	notogy as cheft-side technology.		and d		
• Asse	emple REACT as a front end technology and Nodejs as a	i serve	ersia	ė	
	hology to develop enterprise applications				
Dev	elop a scalable and responsive web application				
	SPRINCERONTANDSTRUTS	2			0+6
	Introducing Spring Poot gottingstorted with springhoot Co	mmo	nanri	nahoot	
Springboot.	information areating system properties executing as		nspri Sania	nguuui	. lask-
Managing C	configuration, creating custom properties, executing co	ue on	Sprii	igbool	application
startup,Data	base access with Spring data, Securing spring bootappin	cation	l.		
	Proise/Experiments:				
1. UseSpring	Boottobuilda webApplication				
2. Createrr	STServiceioranEducation Site				
UNITH			_		0+6
	JAVAREACI	71			9+0
React: Intro	duction to React, Pure React- The Virtual DOM, React I	zieme	ents,		
ReactwithJS	X, Props, State, and the Component Free, Enhancing Comp	onen	ts-FN	1X.	
List of Exe	rcise/Experiments:				
I. BuildSea	rchfilterinReact				
2. Displaya	listinReact				
3. CreateSi	npleLoginforminReact				0.6
		<u> </u>		. 1.	9+0
Node JS: If	itroduction to Node JS, Setting up Node.js, Node.js N	ioaule	es- F	inding	andloading
CommonJS	and JSON modules using		requ	ire,	Hybrid
CommonJS	Node.js/ES6modulescenarios,npm-theNode.jspackagen	anage	emen	tsysten	n.
List of Exe	rcise/Experiments:				
1. Writeand	de.jsprogramformakingexternalhttpcalls				
Z. writeapr	WEBEPAMEWOPK(ANCULAP) I				0+6
	WEDTRAME WORK(ANGULAR)-I				970
Introduction	-	ti a a	tion	amiaa	The authorith
AngularFirs	Angular Olwin Boolstrap CSSAuthentication, Auth		uons	ervice,	
e,Logoutano	RouleGuardCleanup,CustomerService, Hup Service,		en I	interce	plor, Multi
Provider, Co	Simplie-time Configuration, RuntimeConfiguration, Error	Handi	ing.		
List of Exe	rcise/Experiments:				
1. Create al	DropdownusingAngular Ulbootstrap				
	WFBFPAMFWOPK(ANCULAP)_II	ngula	[		0+6
Dependence	viniagtion in Angular Departice programming in Angula	n I or	ina	ut noo	
Dependancy	Injection in Angular, Reactive programming in Angula	r, Lay	ing (	out pag	life avale
Layout, Imp	refige (Exportment)	m and	icom	ponent	mecycle.
1 List OI Exe	wourann with Angularroot module				
	Syourapp with Angulanoot mount		тот	ΔT.•75	SPERIODS
			101		
UUICOM					

Upon completion of the course, the students will be able to:
<b>CO1:</b> WriteWebAPI/RESTful API application programming interface to communicate with Springboot as a server side technology.
<b>CO2:</b> Build single page applications using REACT as a reusable UI component technology as client side technology
CO3:Build applications using Node Js as server side technologies
CO4: Ableto develop a web application using latest Angular Framework
CO5: Apply various Angular features including directives, components, and
services.
TEXTBOOKS:
1. SomnathMusib, Spring Boot in Practice, Manningpublication, June
2022(https://www.manning.com/books/spring-boot-in-practice)
2. AlexBanks, EvePorcello, "LearningReact", May2017, O'ReillyMedia, Inc. ISBN:
9781491954621
(https://www.oreilly.com/library/view/learning-react/9781491954614/)
3. DavidHerron,"Node.jsWebDevelopment-
FourthEdition",2018,PacktPublishing,ISBN:9781788626859
4. SukeshMarla, "AJourneytoAngularDevelopmentPaperback ",
BPBPublications.(https://in.bpbonline.com/products/a-journey-to-angular-
development?_pos=1&_sid=0a0a0e9fb&_ss=r)
5. YakovFainAnton Moiseev, "AngularDevelopmentwithTypeScript", 2nd
Edition.(https://www.manning.com/books/angular-development-with-typescript-second-
edition)
REFERENCES:
1.SueSpielman, TheStrutsFramework1: APractical guide for Java Programmers,
1stEdition.Elsevier2002

அறிவே

apparent.

DISTRIBUTED AND CLOUD COMPUTING

# **OBJECTIVES:**

22CS401

- To articulate the concepts and models underlying distributed computing
- To maintain consistency and perform efficient coordination in distributed systems through the use of logical clocks, global states, and snapshot recording algorithms.
- To learn different distributed mutual exclusion algorithms.
- To develop the ability to understand the cloud infrastructure and virtualization that help in the development of cloud.
- To explain the high-level automation and orchestration systems that manage the virtualized infrastructure.

## UNIT I INTRODUCTION

Definition - Relation to computer system components - Message-passing systems versus shared memory systems - Primitives for distributed communication - Synchronous versus asynchronous executions. A model of distributed computations: A distributed program - A model of distributed executions - Models of communication networks - Global state of a distributed system.

## List of Exercise/Experiments:

- 1. Implement a simple distributed program that communicates between two nodesusing Java's RMI (Remote Method Invocation) API.
- 2. Develop a distributed program that uses Java's messaging API (JMS) to communicate between nodes. Explore the different messaging paradigms (pub/sub, point-to-point) and evaluate their performance and scalability.
- 3. Develop a model of a distributed program using Java's concurrency and synchronization primitives.

UNIT II	LOGICAL TIME, GLOBAL STATE, AND	6+6
	SNAPSHOTALGORITHMS	

Logical time – Scalar Time – Vector Time - Efficient implementations of vector clocks – Virtual Time. Global state and snapshot recording algorithms: System model -Snapshot algorithms for FIFO channels and non-FIFO channels.

## List of Exercise/Experiments:

- 1. Develop a program in Java that implements vector clocks to synchronize the order of events between nodes in a distributed system.
- 2. Implement a snapshot algorithm for recording the global state of the distributed system using vector clocks, for both FIFO and non-FIFO channels. Test the algorithm by recording snapshots at various points in the system's execution and analyzing the resulting global state.

UNIT III DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS 6+
-----------------------------------------------------

L	Т	Р	С
2	0	2	3

6+6

Introduction - Lamport's algorithm - Ricart–Agrawala algorithm - Quorum-based mutual exclusion algorithms - Maekawa's algorithm - Suzuki–Kasami's broadcast algorithm.

# List of Exercise/Experiments:

- 1. Implement Lamport's algorithm for mutual exclusion in a distributed systemusing Java's RMI API.
- 2. Develop a program in Java that implements Maekawa's algorithm for mutual exclusion in a distributed system.
- **3**. Implement Suzuki-Kasami's broadcast algorithm in Java to achieve reliable message delivery in a distributed system.

UNIT IV	<b>CLOUD INFRASTRUCTURE AND VIRTUALIZATION</b>	6+6
Data Center I	nfrastructure and Equipment – Virtual Machines – Containers – Virtual	
Networks - Vi	rtual Storage.	

## List of Exercise/Experiments:

1. Set up a virtualized data center using a hypervisor like VMware or VirtualBox and create multiple virtual machines (VMs) on it. Configure the VMs with different operating systems, resources, and network configurations, and test their connectivity and performance.

6 + 6

**TOTAL: 60 PERIODS** 

2. Deploy a containerized application on a virtual machine using Docker or Kubernetes.

# UNIT V AUTOMATION AND ORCHESTRATION

Automation - Orchestration: Automated Replication and Parallelism - The MapReduce Paradigm: The MapReduce Programming Paradigm – Splitting Input – Parallelism and Data size – Data access and Data Transmission – Apache Hadoop – Parts of Hadoop

– HDFS Components – Block Replication and Fault Tolerance – HDFS and MapReduce - Microservices.

# List of Exercise/Experiments:

- 1. Set up and configure a single-node Hadoop cluster.
- 2. Run the word count program in Hadoop.
- 3. Deploy a microservices architecture using a container orchestration tool like Kubernetes or Docker Swarm.

# **OUTCOMES:**

# Upon completion of the course, the students will be able to:

CO1: Articulate the main concepts and models underlying distributed computing.

CO2: Learn how to maintain consistency and perform efficient coordination in distributed systems through the use of logical clocks, global states, and snapshot recording algorithms.

CO3: Learn different distributed mutual exclusion algorithms

CO4: Develop the ability to understand the cloud infrastructure and virtualization that help in the development of cloud.

CO5: Explain the high-level automation and orchestration systems that manage the virtualized infrastructure.

# TEXT BOOKS:

- 1. Ajay D. Kshemkalyani, Mukesh Singhal, "Distributed Computing: Principles, Algorithms, and Systems", Cambridge University Press, 2011. (Unit 1, 2, 3)
- 2. Douglass E. Comer, "The Cloud Computing Book: The future of computing explained", CRC Press, 2021. (Unit 4, 5)

## **REFERENCES:**

- 1. Arshdeep Bahga, Vijay Madisetti, "Cloud Computing: A Hands-on Approach", Universities Press Private Limited, 2014.
- Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, "Mastering Cloud Computing", Tata Mcgraw Hill, 2017.
- 3. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 4. Hagit Attiya, Jennifer Welch, "Distributed Computing: Fundamentals, Simulations and Advanced Topics", John Wiley & Sons, Inc., 2004.



22CE411	PRODUCT DEVELOPMENT LAB - IV (Prototype Phase)		Т	Р	С
22GE411	(Common to All Branches)	0	0	2	1

# **OBJECTIVES**:

## The Course will enable learners to:

- Analyze the real-time problems in product development from an engineering perspective.
- Implement the DFMA process route to make and assemble the product.
- Test and qualify the product or a system with acquired knowledge.
- Identify the business opportunities for the developed product or process.

The student batch of PDD Lab 3 shall continue their product/ process design work under the guidance of the faculty incharge. All batches should cover the following stages of prototyping work as listed under activities. The faculty incharge shall conduct periodic reviews to endorse the work progress and during the review, the faculty shall provide suggestions/ideas to improvise the project towards completion. An interim report (consisting of BoM, Stages of Prototyping, photographs, proof of work done, etc...) for all listed activities should be submitted by the team during periodic review for evaluation. A final project report is required at the end of the semester and the evaluation is based on an oral presentation in front of the examiner panel constituted by the Head of the Department.

## LIST OF ACTIVITIES:

- 1. Develop Engineering BoM for the approved industrial Mock-up from Phase III. Transform the Engineering BoM to develop a Prototype.
- 2. Devise / Plan an economically efficient manufacturing process to make the Prototype and testing.
- 3. Deliberation of the Product / Process outcome Phase IV. Preparation and submission of a project report.

## TOTAL: 30 PERIODS

## **OUTCOMES:**

- Upon completion of the course, the students will be able to:
- CO1 Identify the real-time problems through literature.
- CO 2 Develop feasible solutions for the problems.
- CO 3 Evaluate the methods to develop solutions to the problem.
- CO 4 Analyze the business opportunities for a new product.
- CO 5 Prepare a detailed report for the experimental dissemination.

S.No	Equipment Name	Quantity
1	CNC Router	1 No
2	3D Printer	1 No
3	3D Scanner	1 No
4	Laser cutting Machine	1 No
5	Centre lathe	2 Nos
6	Arc welding transformer with cables and holders	2 Nos
7	Plumbing tools	2 Sets
8	Carpentry tools	2 Sets
9	Multimeter	10 Nos
10	Drilling Machine	1 No
11	Solder Stations	5 Sets
12	Desoldering Machine	1 No
13	PCB Milling Machine	1 No
14	Variable Power Supply	1 No
15	Electronic Components like Resistors, Transistors, Diode, Inductor, Capacitor, etc.	10 Sets
16	Personal Desktop Computers	30 Nos
17	Numerical Simulation Tools	30 Licence
18	Test bench: Mech: Digital Micrometre/ Vernier/ Bore gauge/ etc EEE : (Based on the electrical components) ECE : (Based on the electronic components)	5 Nos

# LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

22CS411

## APTITUDE AND CODING SKILLS – II (Common to All Branches)

L	Т	Р	С
0	0	2	1

# **OBJECTIVES:**

## The Course will enable learners to:

- Develop advanced vocabulary for effective communication and reading skills.
- Build an enhanced level of logical reasoning and quantitative skills.
- To develop error correction and debugging skills in programming.
- To apply data structures and algorithms in problem solving.

# List of Exercises:

# 1. English – Phase II

Vocabulary: Synonyms, Antonyms, Grammar: Subject-Verb Agreement, Tenses and Articles, Prepositions and Conjunctions, Speech and Voices, Comprehension: Inferential and Literal Comprehension, Contextual Vocabulary, Comprehension ordering

# 2. Logical Reasoning – Phase II

Deductive Reasoning: Coding deductive logic, Directional sense, Blood relations, Objective Reasoning, Selection decision tables, Puzzles, Inductive reasoning: Coding pattern and Number series pattern recognition, Analogy and Classification pattern recognition, Abductive Reasoning: Logical word sequence, Data sufficiency

# 3. Quantitative Ability - Phase II

Basic Mathematics: Divisibility, HCF and LCM, Numbers, decimal fractions and power, Applied Mathematics: Profit and Loss, Simple and Compound Interest, Time, Speed and Distance, Engineering Mathematics: Logarithms, Permutation and Combinations, Probability

# 4. Automata Fix – Phase II

Logical, Compilation and Code reuse

# 5. Automata -Phase II

Data Structure Concepts: Array and Matrices, Linked list, String processing andmanipulation, Stack/Queue, Sorting and Searching

Advanced Design and Analysis Techniques: Greedy Algorithms, Minimum Spanning Trees, String Matching, Divide and Conquer, Computational Geometry

# TOTAL: 30 PERIODS

# **OUTCOMES:**

# Upon completion of the course, the students will be able to:

**CO1:** Develop advanced vocabulary for effective communication and reading skills.

**CO2:** Build an enhanced level of logical reasoning and quantitative skills.

**CO3:** Develop error correction and debugging skills in programming.

**CO4:** Apply data structures and algorithms in problem solving.

0000410		L T P C				
2208412	WIINI PROJECT AND DESIGN THINKING	0	0	2	1	
OBJECTIVE	S:					
The Course w	rill enable learners to:				0	
• Introd	ucing students to design thinking that enhances innovation acti	vitie	es in	terr	ns of	
value creation	and sustainability in problem solving.			,		
• Streng	gthen students' individual and collaborative capabilities to identify	prot	lem	s/ne	eds,	
develop soun	d hypotheses, collect, and analyze appropriate data, develop					
prototypes to c	collect meaningful feedback in a real-world environment.					
LIST OF EXI	ERCISES:					
IINIT 1						
Introduction: I	Design thinking overview- Design Process – Principles of Design	Thi	nkin	g		
-Problems Be	st suited for Design Thinking - Visualization tool		·			
Case Study: F	ProblemIdentification			(6)		
UNIT 2 Empothizo I	nformation Cathering Analysis Story Talling tool Innovation	Id	ootio	n		
Finding and Ex	valuating Ideas Mind Mapping Tool	- 100	catio	11		
Case Study:	Analysing the Identified Problem.			(6)	)	
·						
UNIT 3	and and a second s					
Designing Pro	totypes – Tasks in Prototyping –Understanding Different Prototyp	es-D	Deve	lopi	ng	
different proto	types -Demonstration –Prototyping Tools			(6	`	
Case Study: P	rototyping the solution.			(0)	)	
UNIT 4						
Testing and E	valuation – Testing Prototypes – Evaluation – Improving solution	–Str	ateg	ic		
Opportunities -	-Case Study: Evaluating the solution.		(	(6)		
UNIT 5		T		1		
Applications:	HealthCare and Science – Education- Transportation - Finance	-16	echn	olog	çy.	
(0)						
	ТОТА	L: 3	0 P	ER	IODS	
OUTCOMES						
Upon complet	tion of the course, the students will be able to:					
CO1: Underst	and the design thinking process and able to visualize the problem.					
CO2: Analyse	the problem using innovation tools					
CO3: Design a	a prototype for an identified problem solution					
CO4: resume CO5: Apply #	and evaluate strategies in improving the solution be innovation ideas to real-world applications					
COS. Apply u	in movation ideas to real-world applications.					

**CO5:** Apply the innovation ideas to real-world applications.

# SEMESTER V

	DFFP I FARNINC	L	Т	Р	C				
22AM501		3	-	2	4				
OBJECTIVES:									
• To understand the basics of deep neural networks									
<ul> <li>To implement deep learning models.</li> </ul>									
• To elaborate CNN and RNN architectures of deep neural networks									
<ul> <li>To familiarize autoencoders in neural networks</li> </ul>									
• To learn about the deep generative models									
• To apply Deep Learning to solve real-world problems									
UNIT I	DEEP NETWORKS				9+6				
Challenges motiv	ating deep learning - Deep feedforward networks - Learning XOR	- G	radi	ent	based				
learning - Hidden Units – Architecture Design – Back Propagation – Regularization – Parameter Norm									
Penalties – Constrained Optimization – Under-Constrained Problems – Dataset Augmentation – Noise									
Robustness – Semi-Supervised Learning – Multi-Task Learning – Early Stopping – Parameter Tving									
and Sharing – Bagging and Other Ensemble methods – Dropout – Adversarial Training.									
List of Exercises:									
1. Implement a simple feed-forward neural network.									
a. Create a basic network									
b. Analyze performance by varying the batch size, number of hidden layers, learning rate.									
c. Create a confusion matrix to validate the performance of your model.									
d. Visualize a neural network.									
2. Solve XO	R problem using Multi Layer Perceptron.								
UNIT II	OPTIMIZATION FOR TRAINING DEEP MODELS				9+6				
Pure optimization	n – Challenges – Basic Algorithms – Parameter initialization Strateg	gies	- A	lgor	ithms				
with Adaptive Le	earning Rates – Approximate Second-Order methods – Optimization	on S	Strate	egie	s and				
Meta Algorithms.									
List of Exercises									
1. Implement	Stochastic Gradient Descent Algorithm.								
2. Implement Gradient Descent with AdaGrad.									
UNIT III	CONVOLUTIONAL AND RECURRENT NEURAL NETWO	RKS	)		9+6				
Convolution Ope	ration – motivation – Pooling – Infinitely Strong prior – Variants – S	Stru	cture	ed C	utput				
– Data Types	- Efficient Convolutional Algorithms - Random or Unsuper	vise	d fe	eatu	res –				
Neuroscientific Basis - Deep Learning - Sequence Modelling - Computational Graphs - RNN -									
Bidirectional RNN – Encoder-Decoder - Sequence to Sequence RNN - Deep Recurrent Networks -									
Recursive Neural Networks - Long Term Dependencies; Leaky Units - Strategies for multiple time									
scales $-$ LS I M at	a Gated RNNs - Optimization for Long Term Dependencies.								
List of Exercises	t a Decurrent Neural Networks (DNN) and process any sequential de	oto a	nah	0.0					
characters, words or video frames									
2 Implemen	t RNN with Long Short Term Networks (LTSM)								
LINIT IV	AUTOFNCODERS				0⊥6				
Autoencoders: Ut	dercomplete autoencoders - Regularized autoencoders - Power I av	or S	70 9	nd l	Denth				
- Stochastic encoders and decoders Denoising Autoencoders Learning with autoencoders									
contractive Autoencoders – Applications of autoencoders									
List of Exercises:									
1. Implemen	• t different types of autoencoders.								
UNIT V	DEEP GENERATIVE MODELS				9+6				
Boltzmann Mach	ine – Restricted Boltzmann Machine – Deep Belief Networks –	Dee	p B	oltz	mann				
Machines - Boltzmann Machines for Real-Valued Data - Convolutional Boltzmann Machines -									
Boltzmann Mach	ine for Structured or Sequential Outputs – Directed Generative N	lets	– E	valı	ating				
	71				U				
Generative Models.

List of Exercises:

1. Solve a real world problem using CBM.

**TOTAL: 45** + **30** = **75 PERIODS** 

### **OUTCOMES:**

#### At the end of this course, the students will be able to:

CO1: Demonstrate the basics of deep neural networks to solve real world problems.

- CO2: Implement deep learning models.
- CO3: Elaborate CNN and RNN architectures of deep neural networks.
- CO4: Use autoencoders in neural networks.

CO5: Illustrate the various deep generative models.

CO6: Apply deep generative models to solve real world problems.

# **TEXT BOOKS:**

1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016.

- 1. Charu C. Aggarwal, "Neural Networks and Deep Learning: A Textbook", Springer International Publishing, 2018.
- 2. Yoav Goldberg, "Neural Network Methods for Natural Language Processing", Synthesis Lectures on Human Language Technologies, Morgan & Claypool publishers, 2017.
- 3. Francois Chollet, "Deep Learning with Python", Manning Publications Co, 2018.
- 4. Josh Patterson, Adam Gibson, "Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017.
- 5. Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress, 2018.
- 6. Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification", John Wiley & Sons Inc., 2007.

	$\sim$				
22AM502	Data Exploration, Feature Engineering and Visualization	L	Τ	Р	С
22/11/15/02	Data Exploration, reature Engineering and visualization	2	0	2	3
OBJECTIV	ES:				
The Course	will enable learners to:				
• To o	utline exploratory data analysis and the phases involved in data ana	lysis	5.		
• To d	iscuss various statistical techniques for data analysis.				
• To d	emonstrate the basics of feature engineering on different types of d	ata.			
• To p	erform data analysis and apply visualization techniques.				
• To a	pply the methods of time series analysis.				
• To fo	ormulate dashboards using different datasets by applying data engin	neeri	ng a	nd fo	eature
extra	ction techniques.				
UNIT I	EXPLORATORY DATA ANALYSIS 🤍				6+6
EDA fundamenta	ls – Understanding data science – Significance of EDA – Mak	ing	sens	e of	' data –
Comparing EDA v	with classical and Bayesian analysis – Software tools for EDA.				
Visual Aids For	EDA- Data transformation techniques-merging database, resha	aping	g an	id p	ivoting,
Transformation te	chniques - Descriptive Statistics-types of kurtosis, quartiles, Gro	oupin	lg D	atas	ets-data
aggregation, group	p wise transformation.				
List of Exercise/H	Experiments				
1. Install the fo	ollowing Data Mining and data Analysis tool: Weka, KNIME, Tabl	eau I	Publ	ic.	
2. Perform exp	loratory data analysis (EDA) on with datasets like email data set. E	Expoi	t all	you	r
emails as a c	lataset, import them inside a pandas data frame, visualize them and	get	diffe	erent	;
insights from	n the data.				
UNIT II	FEATURE ENGINEERING				6+6
Text Data – Visua	al Data – Feature-based Time-Series Analysis – Data Streams – F	'eatuu	e S	elect	ion and

# Evaluation.

### List of Exercise/Experiments

- Implement document embeddings for fake news identification. 1.
- Implement feature based representations of time series 2.
- t feature selection algorithm fo

3.	Implement fea	ature selection algorithm for data streams	
1	UNIT III	VISUALIZING DATA	6+6
The	Seven Stages of	of Visualizing Data, Processing-load and displaying data – functions, sketch	ing and
scrip	oting, Mapping	- Location, Data, two sided data ranges, smooth interpolation of values ov	er time
- Vi	sualization of n	umeric data and non-numeric data.	
List	of Exercise/Ex	speriments	
1.	Perform text	mining on a set of documents and visualize the most important words in a	
	visualization	such as word cloud.	
2.	Perform Data	Analysis and representation on a Map using various Map data sets with Mouse	e
	Rollover effect	et, user interaction, etc	
3.	Build cartogra	uphic visualization for multiple datasets involving various countries of the wor	ld;
	states and dist	ricts in India etc.	
1	UNIT IV	TIME SERIES ANALYSIS	6+6
Ove	rview of time	series analysis - showing data as an area, drawing tabs, handling mouse	e input,
Con	nections and C	Correlations – Preprocessing-introducing regular expression, sophisticated	sorting,
Scat	terplot Maps-de	ployment issues.	
List	of Exercise/Ex	periments	
1.	Perform Time	Series Analysis with datasets like Open Power System Data.	
2.	Build a time-s	eries model on a given dataset and evaluate its accuracy.	
	UNIT V	TREES, HIERARCHIES, AND RECURSION	6+6
Tree	maps - treemap	library, directory structure, maintaining context, file item, folder item, Netwo	rks and
Grap	phs-approaching	g network problems-advanced graph example, Acquiring data, Parsing data.	
List	of Exercise/Ex	periments	
1.	Use a case stu	dy on a data set and apply the various visualization techniques and present an	
•	analysis repor	t.	
2.	Mini-Project:-	· Create a Dashboard for a dataset with a visualization tool.	
		TOTAL: 30+30 = 75 PE	RIODS
	OUTCOMES		
	pon completion	of the course, the students will be able to:	
CO	I: Outline explo	ratory data analysis and the phases involved in data analysis.	
CO2	2: Demonstrate	various statistical techniques for data analysis.	
( `( )?	9 Present the has	asics of teature engineering on different types of data	

- ent the basics of feature engineering on different types of data.
- CO4: Perform data analysis and apply visualization techniques.
- **CO5**: Apply the methods of time series analysis.

**CO6**: Develop dashboards using different datasets by applying data engineering and feature extraction techniques.

### **TEXT BOOKS:**

- 1. Suresh Kumar Mukhiya and Usman Ahmed, "Hands-on Exploratory Data Analysis with Python", Packt Publishing, First Edition, March 2020.
- 2. Guozhu Dong, Huan Liu, "Feature Engineering for Machine Learning and Data Analytics", First Publication, CRC Press, First edition, 2018.
- 3. Ben Fry, "Visualizing Data", O'reilly Publications, First Edition, 2007.

- 1. Danyel Fisher & Miriah Meyer, "Making Data Visual: A Practical Guide To Using Visualization For Insight", O'reilly publications, 2018.
- 2. Claus O. Wilke, "Fundamentals of Data Visualization", O'reilly publications, 2019.
- 3. EMC Education Services, "Data Science and Big data analytics: Discovering, Analyzing, Visualizing and Presenting Data", Wiley Publishers, 2015.
- 4. Tamara Munzner, "Visualization Analysis and Design", A K Peters/CRC Press; 1st edition, 2014.
- 5. Matthew O. Ward, Georges Grinstein, Daniel Keim, "Interactive Data Visualization: Foundations, Techniques, and Applications", 2nd Edition, CRC press, 2015.

#### LIST OF EQUIPMENTS:

1. Systems with Python/R, Tableau Public / PowerBI

#### 22CS511

ADVANCED APTITUDE AND CODING SKILLS - I

L T P C 0 0 2 1

# **OBJECTIVES:**

- To develop vocabulary for effective communication and reading skills.
- To build the logical reasoning and quantitative skills.
- To develop error correction and debugging skills in programming.

# LIST OF EXERCISES:

# 1. English – Phase I Advanced

Vocabulary: Synonyms, Antonyms, Grammar: Subject-Verb Agreement, Tenses and Articles, Prepositions and Conjunctions, Speech and Voices, Comprehension: Inferential and Literal Comprehension, Contextual Vocabulary, Comprehension ordering

# 2. Logical Reasoning – Phase I Advanced

Deductive Reasoning: Coding deductive logic, Directional sense, Blood relations, Objective Reasoning, Selection decision tables, Puzzles, Inductive reasoning: Coding pattern and Number series pattern recognition, Analogy and Classification pattern recognition, Abductive Reasoning: Logical word sequence, Data sufficiency

### 3. Quantitative Ability - Phase I Advanced

Basic Mathematics: Divisibility, HCF and LCM, Numbers, decimal fractions and power, Applied Mathematics: Profit and Loss, Simple and Compound Interest, Time, Speed and Distance, Engineering Mathematics: Logarithms, Permutation and Combinations, Probability

### 4. Automata Fix – Phase I

Logical, Compilation and Code reuse

# **OUTCOMES:**

# At the end of this course, the students will be able to:

**CO1:** Develop vocabulary for effective communication and reading skills.

**CO2:** Build the logical reasoning and quantitative skills.

**CO3:** Develop error correction and debugging skills in programming.

TOTAL: 30 PERIODS

	Т	Р	С
22AM511  INTERNSHIP AND CAREER READINESS COURSE $0$	0	2	1
OBJECTIVES:			
The Course will enable learners to:			
• To outline the basics of Data Warehouse concepts.			
• To write queries using SOL and NoSOL.			
• To discuss the features of python.			
• To understand the fundamentals of Cloud.			
• To familiarize the basic algorithms in AL ML and Prompt Engineering			
MODULE I Data Warehouse Concepts, SOL, NoSOL			
<b>Data Warehouse concepts</b> : Need for BI. Data Warehouse. Key terminologies related to DWF	I are	chite	cture:
OLTP vs OLAP, ETL, Data Mart, Metadata, DWH Architecture, creating a DWH			
Data Lakehouse: Data Lake to Data Swamp, SOL Relational Databases, Transactiona	ıl P	roce	ssing.
Relational Database Workload Types, Architectural Challenges, Databricks Evolution			0,
ETL: Extract Data Dump from source, Data format consistency, Data Quality rules, Truncate	& L	.oad.	Load
strategies, Load Approach, Transform, Mapping, Enriching, Joins, filter, Remove Duplicates,	Ag	greg	ation,
Load, Dimension, Facts, EDW Tables, Data Marts	U	0 0	
Variety of ETL Tools: Apache Airflow, Datastage, Oracle Data Integrator, SSIS, Talend, H	Iado	oop,	AWS
Glue, Azure Data Factory, Google Cloud Dataflow, Stitch, SAP, Hevo, Qlik, Airbyte			
Informatica: Informatica Architecture, Informatica PowerCenter & Repository, Informatica	Po	wer	Center
Designer, Informatica PowerCenter workflow manager, Informatica PowerCenter workflow	mo	nitoı	r, Run
Mappings, Workflow creation & Deletion			
SQL (Beginner): DQL, DDL, DML, Filtering and sorting Data, Grouping and Aggregating D	Pata,	, Joii	ns and
Subqueries, Window Functions, Optimizing SQL queries, Automation.			
SQL (Advanced): Store Procedure, Trigger, Views, Functions.			
NoSQL: NoSQL Fundamentals and Comparison with SQL			
Power BI: Connecting Data Sources and Data Bases, Data Modeling, Creating Calculated Fi	elds	s in l	Power
BI			
MODULE II Python, Cloud Fundamentals			
Python (Beginner): Variables, Operators, functions, Libraries, Methods, Refactoring, E	nun	n, T	uples,
Dictionaries, sets, Map, filter, reduce, Class & objects, Exceptions, Overloading			
<b>Python (Advanced):</b> Iterators, Modules, Packages, Generators, List, Comprehensions, Regula	rex	pres	sions,
Serialization, Partial functions, closures, Decorators		a	
AWS: Benefits of AWS, AWS Services - Computer, Storage, Database Service, Networ	kin	g Se	ervice,
Security Service, Management tool Service, Developer tool Service	• ,	C	•,
Azure: Cloud Computing, Services in Azure - Compute, Containers, Databases, Ident	ity,	Sec	curity,
Networking, Storage			
GCP: Cloud Computing, Benefits of GCP, GCP services, AWS VS Azure VS GCP	.1 - 41	:1. 0	7 - 11-14
<b>Python with Deep Learning:</b> Python Data Science Libraries, Numpy, Scipy, Pandas, Matp		10, 2	SCIKIT-
<b>Dython with AL</b> Introduction Demond of AL What is AL Types of AL Why python for AL Dy	thor		lagos
for AI	.110fi	rac	rages
MODILE III AL MI Prompt Engineering			
Artificial Intelligence: Artificial intelligence and its types. AI Doadman Machine learning	and	lite	tunes
Linear regression Analysis Classifications in Machine Learning	anu	115	types,
Machine Learning AI vs MI Classification vs regression Supervised learning Unsupervi	ise	1 100	rning
watering Learning, mile, Classification vs regression, supervised rearning, Onsuperv	1300	100	ınıng,
Training Model, Prenaring Data, K-Nearest Neighbors, Naive Bayes, Logistic Regression, St	Inn	ort V	Jector

PCA Implementations **Prompt Engineering:** Introduction to AI, Linguistics, Language Models, Prompt Engineering Mindset, Zero shot and few shot prompts, AI hallucinations, Vectors/text embeddings.

**Generative AI Fundamentals:** Generative AI and its use cases, How do LLMS (Large Language Models) work, LLMs generates output for NLP task, LLM model decision criteria, Proprietary models, Fine tuned models, Mixing LLM flavors in workflow, Data privacy, Data security

#### **OUTCOMES:**

#### Upon completion of the course, the students will be able to:

**CO1:** Apply the basics of Data Warehouse concepts.

**CO2:** Apply ETL Tools for Data processing.

- CO3: Write queries using SQL and NoSQL.
- **CO4:** Apply the features of python.
- **CO5:** Elaborate the fundamentals of Cloud and various services.
- **CO6:** Demonstrate the basic algorithms in AI, ML and summarize the basics of Prompt Engineering.

- 1. David Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning Publications, 2016.
- 2. Jiawei Han, Micheline Kamber, Jian Pei, "Data Mining: Concepts and Techniques", 3rd Edition, Morgan Kaufmann, 2012
- 3. Jake Vander Plas, "Python Data Science Handbook: Essential Tools for Working with Data", Kindle Edition, 2017
- 4. Elmasri R. and S. Navathe, "Fundamentals of Database Systems", Pearson Education, 7th Edition, 2016.
- 5. Brett Powell , Mastering Microsoft Power BI: Expert techniques for effective data analytics and business intelligence, Packt Publications, 2018.
- 6. Suresh Kumar Mukhiya and Usman Ahmed, "Hands-on Exploratory Data Analysis with Python", Packt publishing, March 2020.
- 7. Ethem Alpaydin, "Introduction to Machine Learning, Adaptive Computation and Machine Learning Series", Third Edition, MIT Press, 2015.
- 8. Nathan Hunter, The Art of Prompt Engineering with Chatgpt: A Hands-On Guide: 3 (Learn AI Tools the Fun Way!), Shroff/Hunter Publishers, 2023
- 9. Joseph Babcock and Raghav Bali, Generative AI with Python and TensorFlow 2, Packt Publications, 2021.

2017927	INDIAN CONSTITUTION	L	Τ	Р	С
2011/27	INDIAN CONSTITUTION	3	0	0	3
<b>OBJECTIVES:</b>					
The Course will e	nable learners to:				
• To have some	knowledge about Indian Constitution.				
• To understand the concept of fundamental rights					
• To learn about Lok Sabha and Rajya Sabha					
• To have some knowledge about Legislative Assembly and Legislative Council					
<ul> <li>To learn abou</li> </ul>	t Local Self Government				
UNIT I	INTRODUCTION			9	
Meaning and Important	ce of Constitution, Preamble and Salient Features of the Constitution				
UNIT II	FUNDAMENTAL RIGHTS			9	
Fundamental Rights, R	ight to Equality, Right to Freedom, Right against exploitation, Rigl	ht to	o fre	edo	om of
religion, Cultural and E	ducational Rights, Right to Constitutional Remedies and Duties, Directional Remedies and Remedies and Duties, Directional Remedies and Reme	ecti	ve P	rinc	ciples
of State Policy.					
UNIT III	LOK SABHA AND RAJYA SABHA			9	
Union Government – L	ok Sabha and Rajya Sabha Composition, Powers, and functions: Th	e Pi	resic	lent	, The

Prime Minister, and Supreme Court: Role Position and Powers/ functions.

#### UNIT IV LEGISLATIVE ASSEMBLY AND LEGISLATIVE COUNCIL

State Government - Legislative Assembly and Legislative Council: Composition, Powers and functions: The Governor, Chief Minister and High Court: Role, Position and Powers/ functions

UNIT V LOCAL SELF GOVERNMENT

Local self-Government, Panchayat Raj System in India; Election Commission; Public Service Commissions, Role, powers, and function

# **TOTAL: 45 PERIODS**

9

9

2009.

## **OUTCOMES:**

#### At the end of this course, the students will be able to:

CO1: Interpret the knowledge on Indian Constitution.

- CO2: Demonstrate the knowledge gained through fundamental rights concept.
- CO3: Relate the concept of Lok Sabha and Rajya Sabha.
- CO4: Illustrate the concept of Legislative Assembly and Legislative Council.
- CO5: Analyze the concept of Local Self Government.

### **TEXT BOOK:**

1. M V Pylee, An Introduction to The Constitution of India, Vikas Publishing House Pvt. Ltd., 5th Edition, 2007.

- 1. Durga Das Basu, Introduction to the Constitution of India, 19th Edition Reprint
- 2. Sharma, Brij Kishore, "Introduction to the Constitution of India", Prentice Hall of India, 7th Edition, 2015.



22 A M601	AUTOMATA THEORY AND COMPILER DESIGN	L	Τ	P	С
	ACTOMATA THEORY AND COMPLEX DESIGN	3	0	0	3
<b>OBJECTIVES:</b>					
To introdu	ce the fundamental concepts of automata theory.				
To underst	and deterministic and non-deterministic finite automata.				
To elabora	te on Regular Expressions and Grammars.				
To introdu	ce Push down Automata and Turing Machines				
To introdu	ce the major concepts of language translation and compiler design				
<ul> <li>To introdu</li> <li>To elabora</li> </ul>	te the code optimization and code generation in compiler design				
	INTRODUCTION TO AUTOMATA THEORY				9
Introduction to E	inite Automate: Structural Depresentations. Automate and Complex	vity	tha	Car	) htrol
Concents of Autor	nine Automata: Structural Representations, Automata and Comple.	xity	the	Cer	itrai
Nondeterministic	nata Theory – Alphabels, Sirings, Languages, Problems.				
with Engilon Tron	Finite Automata: Formai Dermuon, an application, Text Search, I	LIIII	e A	utor	nata
Deterministic Fir	stutions.	a 1a			of
DEA Conversion	af NEA with 6 transitions to NEA without 6 transitions. Conversion		ngua	age	
DFA, Conversion	DECLUAR EXPRESSIONS to NFA WITHOUT C-TRAISITIONS. COnversion		NFA C		$\frac{D\Gamma A}{0}$
	REGULAR EXPRESSIONS AND CONTEXT FREE GRAMM		<u>.</u>		<u>9</u>
Regular Express	ons: Finite Automata and Regular Expressions, Applications of Reg	ular	Ex]	pres	sions,
Algebraic Laws fo	r Regular Expressions, Conversion of Finite Automata to Regular E	xpre	SS10	ns.	<b>C</b> . <b>1</b>
Pumping Lemma	a for Regular Languages: Statement of the pumping lemma, Ap	plic	atio	ns c	of the
Pumping Lemma.				~	
Context-Free Gr	ammars: Definition of Context-Free Grammars, Derivations Us	sing	a (	Jran	nmar,
Leftmost and Righ	tmost Derivations, the Language of a Grammar, Parse Trees, Ambig	uity	in (	bran	nmars
and Languages.					
UNIT III	PDA AND TURING MACHINES				9
Push Down Auto	mata: Definition of the Pushdown Automaton, the Languages of a P	DA	, Eq	uiva	lence
of PDA and CFG'	s, Acceptance by final state				
Turing Machines	: Introduction to Turing Machine, Formal Description, Instantaneous	s de	scrip	otion	i, The
language of a Turi	ng machine .				
UNIT IV	LEXICAL AND SYNTAX ANALYSIS				9
Introduction: The	e structure of a compiler,				
Lexical Analysis	The Role of the Lexical Analyzer, Input Buffering, Recognition	of	Tol	cens	, The
Lexical- Analyzer	Generator Lex,				
Syntax Analysis:	Introduction, Context-Free Grammars, Writing a Grammar, To	p-D	own	Pa	rsing,
Bottom- Up Pars	ing, Introduction to LR Parsing: Simple LR, More Powerful LH	R Pa	arsei	rs, I	Parser
Generators YACC					
UNIT V	CODE GENERATION AND OPTIMIZATION				9
		oda	gen	erat	or,
Code generation	and optimization: Issues in the design of code generator, a simple c	oue	5011		
<b>Code generation</b> Introduction to co	and optimization: Issues in the design of code generator, a simple c de optimization, Basic blocks & flow graphs, DAG representation	ode	basi	ic bl	locks,
<b>Code generation</b> Introduction to co Peephole optimiza	and optimization: Issues in the design of code generator, a simple of de optimization, Basic blocks & flow graphs, DAG representation tion, the principle sources of optimization.	ode	basi	ic b	locks,
Code generation Introduction to co Peephole optimiza	and optimization: Issues in the design of code generator, a simple c de optimization, Basic blocks & flow graphs, DAG representation tion, the principle sources of optimization. TOTA	$\frac{1}{\mathbf{L}: 4}$	basi	ic bl	locks,
Code generation Introduction to co Peephole optimiza OUTCOMES:	and optimization: Issues in the design of code generator, a simple of de optimization, Basic blocks & flow graphs, DAG representation tion, the principle sources of optimization.	ode of L: 4	basi	ic bl	locks,
Code generation Introduction to co Peephole optimiza OUTCOMES: At the end of this	and optimization: Issues in the design of code generator, a simple c de optimization, Basic blocks & flow graphs, DAG representation tion, the principle sources of optimization. TOTA course, the students will be able to:	ode of L: 4	basi	ic bl	locks,
Code generation Introduction to co Peephole optimiza OUTCOMES: At the end of this CO1: Construct de	and optimization: Issues in the design of code generator, a simple c de optimization, Basic blocks & flow graphs, DAG representation tion, the principle sources of optimization. TOTA course, the students will be able to: eterministic and non-deterministic finite automata.	ode of L: 4	basi	ic bl	locks,
Code generation Introduction to co Peephole optimiza OUTCOMES: At the end of this CO1: Construct de CO2: Design cont	and optimization: Issues in the design of code generator, a simple of de optimization, Basic blocks & flow graphs, DAG representation tion, the principle sources of optimization. TOTA Course, the students will be able to: Exterministic and non-deterministic finite automata. Ext free grammars for formal languages using regular expressions.	ode of L: 4	bas:	ERI	locks,
Code generation Introduction to co Peephole optimiza OUTCOMES: At the end of this CO1: Construct de CO2: Design cont CO3: Use PDA ar	and optimization: Issues in the design of code generator, a simple of de optimization, Basic blocks & flow graphs, DAG representation tion, the principle sources of optimization. TOTA course, the students will be able to: terministic and non-deterministic finite automata. ext free grammars for formal languages using regular expressions. d Turing Machines for recognizing context-free languages.	t of	basi	ERI	IOCKS,
Code generation Introduction to co Peephole optimiza OUTCOMES: At the end of this CO1: Construct de CO2: Design cont CO3: Use PDA an CO4: Design a lex	and optimization: Issues in the design of code generator, a simple of de optimization, Basic blocks & flow graphs, DAG representation tion, the principle sources of optimization. TOTA Course, the students will be able to: Exterministic and non-deterministic finite automata. Ext free grammars for formal languages using regular expressions. d Turing Machines for recognizing context-free languages. ical analyzer.	ode of	basi	ERI	locks,
Code generation Introduction to co Peephole optimiza OUTCOMES: At the end of this CO1: Construct de CO2: Design cont CO3: Use PDA an CO4: Design a lex CO5: Design synta	and optimization: Issues in the design of code generator, a simple of de optimization, Basic blocks & flow graphs, DAG representation tion, the principle sources of optimization. TOTA course, the students will be able to: eterministic and non-deterministic finite automata. ext free grammars for formal languages using regular expressions. d Turing Machines for recognizing context-free languages. ical analyzer. ax analyzer.	<b>L:</b>	basi	ERI	locks,

# **TEXT BOOKS:**

- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, 3rd Edition, Pearson Education, 2008.
- 2. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, "Compilers Principles, Techniques and Tools", Second Edition, Pearson, 2013.

- 1. K.L.P Mishra and Chandrashekaran, Theory of Computer Science Automata languages and computation, 3rd Edition, PHI, 2007.
- 2. Elain Rich, "Automata, Computability and complexity", 1st Edition, Pearson Education, 2018.
- 3. Peter Linz, "An introduction to Formal Languages and Automata", Jones and Bartlett Publishers, 6th Edition, 2016.
- 4. K Muneeswaran, "Compiler Design", Oxford University Press, 2013.
- 5. John C Martin, Introduction to Languages and The Theory of Computation, TMH, 4th Edition, 2010.

22AM602	FOUNDATION OF REINFORCEMNT LEARNING AND ENSEMBLE METHODS	L 3	T 0	P 2	C 4		
OBJECTIV	/ES:	I					
The Course	e will enable learners to:						
• Und	erstand the elements of Reinforcement Learning						
• Impl	Implement Bandit Problems and Action Value Methods						
• Und	erstand the basic concepts of Ensemble Learning						
Ana	lyze Bagging and Boosting techniques						
• Anal	lyze the performance of Advanced Ensemble Methods						
UNIT I	INTRODUCTION				9+6		
Introduction History of F Lab Exerci 1. Implem through 2. Implem benefits	a to Reinforcement Learning – Core Concepts and Elements of Reinforcement Reinforcement Learning-Scope – Extended Examples – Reinforcement Lear ses ent the Q-learning algorithm and understand its fundamental component a simple grid world environment. ent a Deep Q-Network (DQN) and apply it to a simple game environment, u and limitations of using deep learning for reinforcement learning tasks.	nent ning nts a inder	Lea Pro Ind I	urnin blen beha nding	g 1. vior g the		
UNIT II	BANDIT PROBLEMS AND ACTION-VALUE METHODS				9+6		
The n-Arma Instruction- Reinforcem Lab Exerci 1. Implem	ed Bandit Problem- Action-Value Methods- Softmax Action Selection- E Incremental Implementation- Tracking a Nonstationary Problem- Optimist ent Comparison- Associative Search Framework ses ent the basic concepts of the multi-armed bandit problem, explore differ	valua tic In	ation nitial	n Ve Val	rsus ues- s for		
selectin	g actions, and analyze the performance of these strategies.						
2. Implem	ent policy evaluation and policy improvement in a finite Markov Decision generation programming methods	1 Pro	ocess	s (M	DP)		
UNIT III	INTRODUCTION TO ENSEMBLE METHODS				9+6		
Basic Conc Application Lab Exerci 1. Implement predictive	epts -Popular Learning Algorithms- Evaluation and Comparison- Ense s of Ensemble Methods. ses nt and understand the Stacking ensemble method by combining multiple m e performance.	mble odel	e M	etho impi	ds -		
2. Impleme	nt a Random Forest algorithm and tune its hyper parameters to achieve optim	nal <u>r</u>	berfo	orma	nce.		
UNIT IV	BOOSTING AND BAGGING ALGORITHMS				9+6		
Introduction	n to Boosting Algorithms- AdaBoost Algorithm -Examples-Theoretical Is	ssues	s -M	lultic	lass		

Extension –	Noise Tolerance -XGBoost - Examples and Issues – Introduction to Bagging Algorith	m –					
Examples and Issues – Random tree Ensembles -Combination Methods - Averaging – Voting –							
Combining	by learning – Other Combination methods – Relevant methods						
Lab Exerci	ses						
1. Implement	nt the AdaBoost algorithm, and to analyze its performance on a simple dataset.						
2. Implement	at the bagging algorithm using random forests, and to analyze its performance on a data	set.					
UNIT	ADVANCED LEAKNING IECHNIQUES	9+0					
Semi-superv	ised Learning-Active Learning- Cost-Sensitive Learning- Class Imbalanced Learning						
Lab Exerci	ses						
1. Impleme performance	ent a semi-supervised learning algorithm using self-training to improve classificate with limited labeled data.	ition					
2. Implement	nt an active learning algorithm using uncertainty sampling to select the most informative	data					
points for la	beling.						
	TOTAL: 75 PERI	ODS					
OUTCOM	ES:						
At the end	of this course, the students will be able to:						
CO1: Expla	in the fundamental components of Reinforcement Learning						
CO2: Imple	ement Tabular Solution Methods						
CO3: Expl	ain the basic concepts of Ensemble Learning						
CO4: Impl	ement Bagging and Boosting Algorithm and analyze its performance						
CO5: Anal	yze Advanced Ensemble Methods						
TEXT BOO	DKS:						
1. Sutton l	R. S. and Barto A. G., "Reinforcement Learning: An Introduction", MIT						
Press. S	econd Edition. 2020.						
2. Zhi-Huz	Zhou, Ensemble Methods Foundations and Algorithms, 2012 First Edition						
Chapma	n & Hall/CRC Machine Learning & Pattern Recognition – Unit 4 & 5						
Chuphic	e mai ere maenne Beaning er autom recognition om tre s						

# **REFERENCES:**

- Kevin Murphy, "Machine Learning A Probabilistic Perspective", MIT press, 2012.
   Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 3. Aurelien Geron" Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow".

2205602	<b>OBJECT ORIENTED SOFTWARE ENGINEERING</b>	L	Т	P	С
220,5002	(Lab Integrated)	2	0	2	3
<b>OBJECTIVES:</b>					
The Course will enable	learners to:				
• Explain software engineering principles and activities involved in building large software					
programs.					
• Describe the pro	cess of requirements gathering, analysis and unified modelling	3			
• Illustrate the obj	ect oriented design process.				
• Analyse various	traditional and object oriented testing methods				
Apply estimation	n techniques, schedule project activities and compute pricing.				
UNIT I	PRODUCT AND PROCESS			6+	6
The Nature of Software -	- Defining the Discipline - The Software Process - Process mo	dels	- P	resc	riptive
Process Models – Product and Process – Agility and Process – What is an Agile Process? - Scrum – Other					
Agile Frameworks – Kan	ıban – DevOps				
List of Exercise/Ex	xperiments:				
1 11					

1. Identify a software system that needs to be developed.

# 2. Document the Software Requirements Specification (SRS) for the identified system.

# UNIT II REQUIREMENTS AND UNIFIED MODELING

Requirements Engineering – Establishing the Groundwork: Nonfunctional Requirements – Requirements Gathering – Developing Use Cases – Negotiating and Validating Requirements.

6+6

6+6

6+6

6+6

Unified Modeling Language – Introduction – Static and Dynamic Models – Modelling – Introduction to the UML – UML Diagrams – UML Class Diagrams – Use-Case Diagram – UML Dynamic Modelling.

# List of Exercise/Experiments:

- 1. Identify use cases and develop the Use Case model.
- 2. Identify the conceptual classes and develop a Domain Model and also derive a Class Diagram from that.

UNIT III OBJECT ORIENTED ANALYSIS AND DESIGN

Object oriented Analysis process – Business object Analysis – Use-case driven OOA – Business process modelling – Use case model. Design Concepts – Design Process – Design Concepts – Design Model: Design Principles and Design Elements. Architectural Design – Designing class-based components -Conducting Component Level Design – User Interface Analysis and Design – Pattern-Based Software Design.

# List of Exercise/Experiments:

1. Using the identified scenarios, find the interaction between objects and represent them using UML Sequence and Collaboration Diagrams

2. Draw relevant State Chart and Activity Diagrams for the same system

# UNIT IV SOFTWARE TESTING

Component Level: A Strategic Approach to Software Testing – White-Box Testing – Black Box Testing - Object Oriented Testing Integration Level: Integration Testing – AI and Regression Testing – Integration Testing in the OO Context Specialized Testing for Mobility: Web application Testing – Web Testing Strategies – Security Testing – Performance Testing – Real time Testing – Testing AI Systems – Testing Virtual Environments.

# List of Exercise/Experiments:

- 1. Implement the system as per the detailed design
- 2. Test the software system for all the scenarios identified as per the usecase diagram

# UNIT V SOFTWARE PROJECT MANAGAMENT

Software Metrics and Analytics: Software Measurement – Product Metrics. Creating a Viable Software Plan: The Project Planning Process – Software Scope and Feasibility – Decomposition and Estimation Techniques – Project Scheduling. Risk Management: Reactive Versus Proactive Risk Strategies – Risk Identification – Risk Projection – The RMMM Plan.

Software Process Improvement: The SPI Process – The CMMI

# List of Exercise/Experiments:

- 1. Improve the reusability and maintainability of the software system by applying appropriate design patterns.
- 2. Implement the modified system and test it for various scenarios

# SUGGESTED DOMAINS FOR MINI-PROJECT:

- 1. Passport automation system.
- 2. Book bank
- 3. Exam registration
- 4. Stock maintenance system.
- 5. Online course reservation system
- 6. Airline/Railway reservation system
- 7. Software personnel management system
- 8. Credit card processing
- 9. E-book management system
- 10. Recruitment system

- 11. Foreign trading system
- 12. Conference management system
- 13. BPO management system
- 14. Library management system
- 15. Student information system

# **TOTAL: 30 + 30= 60 PERIODS**

# **OUTCOMES:**

### Upon completion of the course, the students will be able to:

**CO1:** Understanding Software and Software Processes

- **CO2:** Analyze and gather software requirements.
- **CO3: Use** UML to **create** static and dynamic models
- **CO4: Design** software components using object-oriented principles.

**CO5:** Apply various software testing strategies.

**CO6: Develop** software projects effectively.

# **TEXT BOOKS:**

- 1. Roger S. Pressman, "Software Engineering: A Practitioner's Approach", McGraw Hill International Edition, Nineth Edition, 2020.
- 2. Ali Bahrami, "Object Oriented Systems Development", McGraw Hill International Edition, 2017.

# **REFERENCES:**

- 1. Micheal Blalh and James Rumbaugh, Object Oriented Modeling and Design with UML, 2nd edition Pearson 2013.
- 2. Ian Sommerville, "Software Engineering", Tenth Edition, Pearson Education, 2016.
- 3. Ivar Jacobson, Harold Bud Lawson, Pan-Wei Ng, Paul E. McMahon, Michael Goedicke, "The Essentials of Modern Software Engineering", Morgan & Claypool Publishers, 2019.
- 4. Booch, G, Jacobson I, Rumbaugh J, "The Unified Modeling Language User Guide", Addison Wesley, 2008.
- 5. Martin Fowler, "UML Distilled: A Brief Guide to the Standard Object Modeling Language", 3rd edition, Addison Wesley, 2003.

# LIST OF EQUIPMENTS:

ArgoUML, Visual Paradigm

22CS611	ADVANCED APTITUDE AND CODING SKILLS - II

L	Т	Р	С
0	0	2	1

# **OBJECTIVES:**

- To develop advanced vocabulary for effective communication and reading skills.
- To build an enhanced level of logical reasoning and quantitative skills.
- To develop error correction and debugging skills in programming.
- To apply data structures and algorithms in problem solving.

# LIST OF EXERCISES:

# 1.English – Phase II Advanced

Vocabulary: Synonyms, Antonyms, Grammar: Subject-Verb Agreement, Tenses and Articles, Prepositions and Conjunctions, Speech and Voices, Comprehension: Inferential and Literal Comprehension, Contextual Vocabulary, Comprehension ordering

# 2. Logical Reasoning – Phase II Advanced

Deductive Reasoning: Coding deductive logic, Directional sense, Blood relations, Objective Reasoning, Selection decision tables, Puzzles, Inductive reasoning: Coding pattern and Number series pattern recognition, Analogy and Classification pattern recognition, Abductive Reasoning: Logical word sequence, Data sufficiency

# 3. Quantitative Ability - Phase II Advanced

Basic Mathematics: Divisibility, HCF and LCM, Numbers, decimal fractions and power, Applied Mathematics: Profit and Loss, Simple and Compound Interest, Time, Speed and Distance, Engineering Mathematics: Logarithms, Permutation and Combinations, Probability

### 4. Automata Fix – Phase II

Logical, Compilation and Code reuse

#### 5. Automata - Phase II

Data Structure Concepts: Array and Matrices, Linked list, String processing and manipulation, Stack/Queue, Sorting and Searching Advanced Design and Analysis Techniques: Greedy Algorithms, Minimum Spanning Trees, String Matching, Divide and Conquer, Computational Geometry

TOTAL: 30 PERIODS

#### **OUTCOMES:**

### At the end of this course, the students will be able to:

**CO1:** Develop advanced vocabulary for effective communication and reading skills.

**CO2:** Build an enhanced level of logical reasoning and quantitative skills.

**CO3:** Develop error correction and debugging skills in programming.

**CO4:** Apply data structures and algorithms in problem solving.

# NGINEERING COLLEGE

# SEMESTER – VII

#### **Professional Ethics**

PREFESSIONAL ETHICS	C				
	3				
<b>OBJECTIVES:</b>					
To familiarize with Engineering Ethics and Human Values.					
• To impart knowledge on codes of ethics, safety, responsibilities and rights of engineers.					
• To give awareness on global issues related to environmental ethics, computer ethics, weapons					
development and corporate social responsibility.					
UNIT I HUMAN VALUES 9					
Morals, values and Ethics - Integrity - Work ethic - Service learning - Civic virtue - Respect for oth	ers				
- Living peacefully - Caring - Sharing - Honesty - Courage - Valuing time - Cooperation	ı —				
Commitment - Empathy - Self-confidence - Character - Spirituality - Introduction to Yoga a	ind				
meditation for professional excellence and stress management.					
UNIT II ENGINEERING ETHICS 9					
Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas –					
Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models o	f				
professional roles - Theories about right action – Self-interest – Customs and Religion – Uses of					
Ethical Theories.					
UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION 9					
Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A					
Balanced Outlook on Law - The Challenger Case Study.					
UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS 9					
Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk - Ca	ase				
Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - Ca Studies: Chernobyl and Bhopal Disasters - Respect for Authority – Collective Bargaining	ase				
Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - Ca Studies: Chernobyl and Bhopal Disasters - Respect for Authority – Collective Bargaining Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rig	ase — hts				
Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - Ca Studies: Chernobyl and Bhopal Disasters - Respect for Authority – Collective Bargaining Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rig – Intellectual Property Rights (IPR) – Discrimination.	ase  hts				

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership –Code of Conduct – Corporate Social Responsibility.

#### TOTAL: 45 PERIODS

### **OUTCOMES:**

#### At the end of this course, the students will be able to:

- **CO1:** Summarize the importance of human values in work place.
- **CO2:** Discuss the senses of engineering ethics, moral dilemmas, moral autonomy and uses of ethical theories.
- **CO3:** Describe the role of engineers as responsible experimenters and necessity of codes of ethics in engineering.
- **CO4:** Explain safety, risk, responsibilities and rights in the society.
- **CO5:** Analyze the global issues related to environmental ethics, computer ethics, weapons development and the role of engineers as expert witnesses and advisors.

#### **CO6:** Apply ethics in society and discuss the ethical issues related to engineering.

#### **TEXT BOOKS:**

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2017.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2013.

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2012.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2018.
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2017.
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2008.

		L	Т	P	С
22AM701	NATURAL LANGUAGE PROCESSING	3	0	2	4
<b>OBJECTIVES</b>	:				
• To lea	rn the fundamentals of natural language processing				
• To dis	cuss word level analysis.				
• To dis	cuss the different language models.				
• To und	derstand the significance of syntactic and semantic analysis.				
• To lea	rn discourse algorithms and various lexical resources.				
UNIT I	INTRODUCTION				9+6
Natural Langua	ge Processing - Ambiguities in NLP - Regular Expressions – Words	– C	orpo	ora	- Text
Normalization,	Minimum Edit Distance.		1		
Lab Exercises:					
1. NLTK b	pasic Tasks.				
a. 7	Fokenization				
b. \$	Stemming				
c. 1	Lemmatization				
2. Identify	the Patterns from given the given text document using Regular Expre	ssio	ns.		
UNIT II	WORD LEVEL ANALYSIS				9+6
Morphological	Analysis – Morphological Parsing - Unsmoothed N-grams, Eva	luati	ng	N-	grams,
Smoothing, Inte	erpolation and Backoff – Word Classes, Part-of-Speech Tagging, Rul	e-ba	sed	- H	MM -
Transformation	-based tagging.				
Lab Exercises:					

1. Implement POS tagging using Hidden Markov Models.
2. Write a program to compute unsmoothed unigram and bigrams.
UNIT IIILANGUAGE MODELS9+6
Markov Chains - Hidden Markov Model - Forward Algorithm - Decoding: Viterbi Algorithm -
Training HMMs – Maximum Entropy Models – Maximum Entropy Markov Models.
Lab Exercises:
1. Identify semantic relationships between words and sentences using different measures.
2. Implement Sequence Classification using Support Vector Machine model.
3. Implement Named Entity Recognition using ML Models.
UNIT IVSYNTACTIC AND SEMANTIC ANALYSIS10+6
Context-Free Grammars - Grammar rules - Treebanks - Normal Forms for grammar – Finite-state –
CFG - Dependency Grammar – Parsing with CFG – Search – Ambiguity - Syntax-Driven Semantic
analysis – Semantic Augmentations - Semantic attachments – Unification based approaches to Semantic
Analysis – Semantic Attachments – Integrating Semantic Analysis to Early Parser – WordNet.
Lab Exercises:
1. Implement Word Embedding using Word2vec, FastText, Glove model
2. Implement Transformer models using Pytorch.
UNIT V APPLICATIONS OF NLP 8+6
Information Extraction - Question Answering and Summarization – Dialogue and Conversational Agent
- Machine Translation.
Lad Exercises:
1. Implement Chatbol. 2. Implement Neural Machine Translation using Encoder Decoder model
2. Implement Neural Machine Translation using Encoder –Decoder model.
OUTCOMES.
OUTCOMES: At the end of this course, the students will be able to:
CO1: Elaborate the fundamentals of natural language processing
CO2: Perform word level analysis in NLP
CO3: Implement different ML models for NLP
<b>CO4:</b> Analyze the syntax and semantics using various methods
<b>CO5:</b> Analyze text at the word level
<b>CO6:</b> Apply NLP to solve real-world problems
TEXT BOOKS:
1. Daniel Jurafsky, James H. Martin, "Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics and Speech". Pearson Publication, Second
Edition, 2019.
REFERENCES:
1. Steven Bird, Ewan Klein and Edward Loper, "Natural Language Processing with Python", First
Edition, O'Reilly Media, 2009.
<ol> <li>Edition, O'Reilly Media, 2009.</li> <li>Breck Baldwin, "Language Processing with Java and LingPipe Cookbook", Atlantic Publisher,</li> </ol>
<ol> <li>Edition, O'Reilly Media, 2009.</li> <li>Breck Baldwin, "Language Processing with Java and LingPipe Cookbook", Atlantic Publisher, 2015.</li> </ol>
<ol> <li>Edition, O'Reilly Media, 2009.</li> <li>Breck Baldwin, "Language Processing with Java and LingPipe Cookbook", Atlantic Publisher, 2015.</li> <li>Richard M Reese, "Natural Language Processing with Java", O'Reilly Media, 2015.</li> </ol>
<ol> <li>Edition, O'Reilly Media, 2009.</li> <li>Breck Baldwin, "Language Processing with Java and LingPipe Cookbook", Atlantic Publisher, 2015.</li> <li>Richard M Reese, "Natural Language Processing with Java", O'Reilly Media, 2015.</li> <li>Nitin Indurkhya and Fred J. Damerau, "Handbook of Natural Language Processing", Second</li> </ol>
<ol> <li>Edition, O'Reilly Media, 2009.</li> <li>Breck Baldwin, "Language Processing with Java and LingPipe Cookbook", Atlantic Publisher, 2015.</li> <li>Richard M Reese, "Natural Language Processing with Java", O'Reilly Media, 2015.</li> <li>Nitin Indurkhya and Fred J. Damerau, "Handbook of Natural Language Processing", Second Edition, Chapman and Hall/CRC Press, 2010.</li> </ol>
<ol> <li>Breck Baldwin, "Language Processing with Java and LingPipe Cookbook", Atlantic Publisher, 2015.</li> <li>Richard M Reese, "Natural Language Processing with Java", O'Reilly Media, 2015.</li> <li>Nitin Indurkhya and Fred J. Damerau, "Handbook of Natural Language Processing", Second Edition, Chapman and Hall/CRC Press, 2010.</li> <li>Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval",</li> </ol>
<ol> <li>Edition, O'Reilly Media, 2009.</li> <li>Breck Baldwin, "Language Processing with Java and LingPipe Cookbook", Atlantic Publisher, 2015.</li> <li>Richard M Reese, "Natural Language Processing with Java", O'Reilly Media, 2015.</li> <li>Nitin Indurkhya and Fred J. Damerau, "Handbook of Natural Language Processing", Second Edition, Chapman and Hall/CRC Press, 2010.</li> <li>Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.</li> </ol>
<ol> <li>Edition, O'Reilly Media, 2009.</li> <li>Breck Baldwin, "Language Processing with Java and LingPipe Cookbook", Atlantic Publisher, 2015.</li> <li>Richard M Reese, "Natural Language Processing with Java", O'Reilly Media, 2015.</li> <li>Nitin Indurkhya and Fred J. Damerau, "Handbook of Natural Language Processing", Second Edition, Chapman and Hall/CRC Press, 2010.</li> <li>Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.</li> </ol>

	T.	Т	Р	С	
22AM702	COMPUTER VISION	3	0	0	3
<ul> <li>OBJECTIVES:</li> <li>To understand the fundamental concepts related to Image formation and processing.</li> <li>To learn feature detection, matching and detection.</li> <li>To become familiar with feature based alignment and motion estimation.</li> <li>To develop skills on 3D reconstruction.</li> <li>To understand image based rendering and recognition.</li> </ul>					
UNIT I	INTRODUCTION TO IMAGE FORMATION AND PROCESS	ING	r		9
Computer Vision - Geometric primitives and transformations - Photometric image formation - The digital camera - Point operators - Linear filtering - More neighborhood operators - Fourier transforms - Pyramids and wavelets - Geometric transformations - Global optimization.					
UNIT II	FEATURE DETECTION, MATCHING AND SEGMENTATION				
Points and pat and mode find	ches - Edges - Lines - Segmentation - Active contours - Split and me ing - Normalized cuts - Graph cuts and energy-based methods.	erge	- M	ean	shift
UNIT III	FEATURE-BASED ALIGNMENT & MOTION ESTIMATION				9
motion - Trans motion.	Slational alignment - Parametric motion - Spline-based motion - Optics 3D RECONSTRUCTION	al fl	OW -	Lay	vered
Shape from X Volumetric rep	K - Active range finding - Surface representations - Point-based presentations - Model-based reconstruction - Recovering texture maps	rep and	rese l alb	ntati edos	ions- sos
UNIT V	IMAGE-BASED RENDERING AND RECOGNITION				9
View interpol Video-based recognition - C	ation Layered depth images - Light fields and Lumi graphs - Envir rendering-Object detection - Face recognition - Instance recogni Context and scene understanding- Recognition databases and test sets.	onn tion	nent - (	mat Cate	tes - gory
		: 4	5 PI	ERI	ODS
OUTCOMES At the end of CO1: Analyze CO2: Compar CO3: Implem CO4: Create a CO5: Perform CO6: Implem TEXT BOOK 1. Richar	this course, the students will be able to: and apply basic image processing techniques in practical applications the the concepts related to feature detection, matching and detection. ent feature-based alignment and motion estimation in real-world appli and Apply 3D Reconstruction techniques in diverse applications. a image-based rendering and recognition. ent efficient solutions to image processing and computer vision proble <b>XS:</b> d Szeliski, Computer Vision: Algorithms and Applications, Springer	s. catio ems. r-Ve	ons.		ndon
Limite	d 2011. 86				

2. Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Person Education, Second Edition, 2015

- 1. Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, March 2004.
- 2. Christopher M. Bishop; Pattern Recognition and Machine Learning, Springer, 2006
- 3. E. R. Davies, Computer and Machine Vision, Fourth Edition, Academic Press, 2012.

22434	7711	MLO	L	Т	P	С
ZZAM	/11	MLOps	0	0	2	1
OBJE • •	CTIV To d To p To p To d	<b>'ES:</b> esign and implement a Machine Learning Project. erform data engineering and ML model engineering and develop a erform model testing and validation. eploy a ML model using CI/CD pipeline.	mode	el.		
LIST	OF E	XERCISES:	-			
1. An tree	alyze nds to	messy customer purchase data (wrangling), compress for efficiency improve product recommendations.	y, and	visua	lize b	uying
lea	rning,	evaluating with accuracy and confusion matrix.	mag	cs usi	ng ut	115101
3. Bu a p	ild a t re-tra	ext classifier to distinguish between product reviews and custome ined NLP library, evaluating with F1-score.	r sup	port ti	ckets	using
4. Bu the	ild a r eir wat	recommendation system using collaborative filtering to suggest months to history and ratings provided by similar viewers.	ovies	to use	rs bas	ed on
5. Tra	ain an arning	image classifier (cifar-10) using a CNN with MLflow to optigrate, epochs) for maximizing accuracy.	mize	hyper	paran	neters
6. De wit	ploy a th File	a simple web application in a Docker container on Kubernetes, colle beat and visualizing them in Kibana dashboards.	ecting	user i	nterad	ctions
7. Bu lea to i	ild a rning identi	CI/CD pipeline in Github Actions to automate training and dep model (e.g., image classifier) using Jenkins, including model profil fy performance bottlenecks.	loyme ling w	ent of rith a p	a ma profile	chine r tool
8. De for	ploy t initia	wo versions of a web application (A/B test) with Google Optimize, l risk assessment and measuring conversion rates for each version	using	a Car	hary p	attern
9. De hea	ploy a alth m	a sample web application (e.g., flask app) to a cloud platform (AWS etrics (CPU, memory) with Cloudwatch, and visualize them in Graf	S), mo Fana C	onitor loud c	applic lashbo	cation bards.
		TO	DTAL	: 30	PER	ODS
OUTC At the CO1: CO2: CO3: CO4:	<b>comi</b> end of Desig Apply Apply Build	ES: of this course, the students will be able to: n and implement a Machine Learning Project. data engineering and ML model engineering and develop a mode model testing and validation. and Deploy a ML model using CI/CD pipeline.	1.			
LIST System	OF E	QUIPMENTS: h Anaconda Jupyter Notebook Python				

**20IT917** 

9

9

9

9

### **OBJECTIVES:**

#### The Course will enable learners to:

- Facilitate the students with the concepts of Indian traditional knowledge and to make them understand the importance of roots of knowledge system.
- Make the students understand the traditional knowledge and analyse it and apply it to their day-to-day life.

#### UNIT I INTRODUCTION TO TRADITIONAL KNOWLEDGE

Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge.

#### PROTECTION OF TRADITIONAL KNOWLEDGE **UNIT II**

The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

#### **UNIT III** LEGAL FRAMEWORK AND TK

The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

#### **UNIT IV** TRADITIONAL KNOWLEDGE AND INTELLECTUAL PROPERTY

Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge. 9

#### TRADITIONAL KNOWLEDGE IN DIFFERENT SECTORS UNIT V

Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK.

### **TOTAL: 45 PERIODS**

### **OUTCOMES:**

#### At the end of this course, the students will be able to:

CO1: Illustrate the concepts of Indian traditional knowledge.

CO2: Apply the concept of protection of traditional knowledge.

CO3: Analyze the legal framework and traditional knowledge.

CO4: Interpret the concept of traditional knowledge and intellectual property.

CO5: Analyze and apply traditional knowledge to their day-to-day life.

### **TEXT BOOK:**

1. Amit Jha, Traditional Knowledge System in India, Atlantic Publishers, 2002.

### **REFERENCES:**

1. Kapil Kapoor, Michel Danino, Knowledge Traditions and Practices of India, Central Board of Secondary Education, 2012.

# PROFESSIONAL ELECTIVE VERTICAL I – DATA SCIENCE AND ANALYTICS

	DATA SCIENCE USING DVTHON	T	т	Р	С
22AM901	(Lab Integrated)	2	1	2	2
OB IECTIVES.	(Lab Integrated)	4	U	4	3
The Course y	vill anabla laarnars ta				
To loom the	fundamentals of Data Science				
• To learn the	Tunualiteinais of Data Science.	and	-	leas	an in
• To experime Duthon for D	ent and implement python noraries for data science Learn the tools	and	pac	кад	es m
	directions the size of a stiffing the stiffing of a stiffing of the stiffing o				
• To apply and	a implement basic classification algorithms				
• To apply clu	istering and outlier detection approaches.				
• To present a	nd interpret data using visualization libraries in Python				
					6+6
Data Science: Bene	fits and uses – facets of data - Data Science Process: Overview – D	efin	ing	rese	earch
goals – Retrieving	data – data preparation - Exploratory Data analysis – build the mo	del -	– pr	ese	nting
findings and buildin	findings and building applications - Data Mining - Data Warehousing – Basic statistical descriptions of				
Data.	CNUINECNINU GULLEUE				
List of Exercise/Ex	speriments:				
1. Download, 1	nstall and explore the features of R/Python for data analytics				
• Insta	lling Anaconda				
Basic	c Operations in Jupyter Notebook				
Basic	c Data Handling				
UNITII	PYTHON LIBRARIES FOR DATA SCIENCE				6+6
Introduction to Nu	mpy - Multidimensional Ndarrays – Indexing – Properties – C	onst	ants	; —	Data
Visualization: Nda	rray Creation – Matplotlib - Introduction to Pandas – Series	- D	ataf	ram	les –
Visualizing the Data	a in Dataframes - Pandas Objects – Data Indexing and Selection – F	land	ling	) mi	ssing
data – Hierarchical	indexing – Combining datasets – Aggregation and Grouping – Join	s- P1	vot	Tat	oles -
String operations –	Working with time series – High performance Pandas.				
List of Europeiro /Er					
List of Exercise/Ex	b Numpy arrays Creation of numpy arrayying the tuple Determine	o th	0 0 i -	70 6	hono
1. WORKING WI	on of the array Manipulation with array Attributes. Creation of Su	le un b ari	C 512	Dor	form
the reshapin	of the array along the row vector and column vector. Create	5 an Twe	ay,	rave	ond
nerform the	concatenation among the arrays	Iwc		lays	anu
2 Working wit	th Pandas data frames - Series DataFrame and Index Implement th	e D:	ata S	Sele	ction
Operations	Data indexing operations like: loc iloc and ix operations of hand	ling	the	mi	ssing
data like No	ne. Nan. Manipulate on the operation of Null Vaues (is null(), not	null	(), (	lror	ma().
fillna()).			.(), -	F	();
3. Perform the	Statistics operation for the data (the sum, product, median, minimum	n an	d m	axir	num,
quantiles, ar	g min, arg max etc.).				,
4. Use any data	a set compute the mean ,standard deviation, Percentile.				
UNIT III	CLASSIFICATION				6+6
Basic Concepts – D	ecision Tree Induction – Bayes Classification Methods – Rule-Base	ed C	lass	ific	ation
– Model Evaluation	and Selection.				
Bayesian Belief N	letworks – Classification by Backpropagation – Support Vect	or	Mac	chin	es –
Associative Classif	ication – K-Nearest-Neighbor Classifiers – Fuzzy Set Approach	ies	- M	lulti	class
Classification - Sem	ni-Supervised Classification.				
List of Exercise/Ex	xperiments:				

1. Apply Decision Tree algorithms on any data set.	
2. Apply SVM on any data set	
3. Implement K-Nearest-Neighbor Classifiers	
UNIT IV CLUSTERING AND OUTLIER DETECTION	6+6
Cluster Analysis - Partitioning Methods - Evaluation of Clusters - Probabilistic Model-Ba	ased
Clustering - Outliers and Outlier Analysis - Outlier Detection Methods - Statistical Approache	es –
Clustering and Classification-Based Approaches.	
List of Exercise/Experiments:	
1. Apply K-means algorithms for any data set.	
2. Perform Outlier Analysis on any data set.	
UNIT V DATA VISUALIZATION	6+6
Importing Matplotlib – Simple line plots – Simple scatter plots – visualizing errors – density and con	tour
plots - Histograms - legends - colors - subplots - text and annotation - customization - the	hree
dimensional plotting - Geographic Data with Basemap - Visualization with Seaborn.	
List of Exercise/Experiments:	
1. Basic plots using Matplotlib.	
2. Implementation of Scatter Plot.	
3. Construction of Histogram, bar plot, Subplots, Line Plots.	
4. Implement the three dimensional potting.	
5. Visualize a dataset with Seaborn.	
TOTAL:30+30 = 60 PERIODS	
OUTCOMES:	
At the end of this course, the students will be able to:	
<b>CO1:</b> Explain the fundamentals of data science.	
CO2: Experiment python libraries for data science.	
CO3: Apply and implement basic classification algorithms.	
CO4: Implement clustering and outlier detection approaches.	
<b>CO5:</b> Present and interpret data using visualization tools in Python.	
<b>CO6:</b> Use various data science algorithms to analyze data.	
TEXT BOOKS:	
<ol> <li>David Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manu Publications, 2016. (Unit 1)</li> </ol>	ning
2. Ashwin Pajankar, Aditya Joshi, Hands-on Machine Learning with Python: Implement Ne	ural
Network Solutions with Scikit-learn and PyTorch, Apress, 2022.	
3. Jake VanderPlas, "Python Data Science Handbook – Essential tools for working with da	ita",
O'Reilly, 2017.	
REFERENCES:	
1. Roger D. Peng, R Programming for Data Science, Lulu.com, 2016	
2. Jiawei Han, Micheline Kamber, Jian Pei, "Data Mining: Concepts and Techniques", 3rd Edit	ion,
Morgan Kaufmann, 2012.	
3. Samir Madhavan, Mastering Python for Data Science, Packt Publishing, 2015	
4. Laura Igual, Santi Seguí, "Introduction to Data Science: A Python Approach to Concepts,	
5. Techniques and Applications", 1st Edition, Springer, 2017	
6. Peter Bruce, Andrew Bruce, "Practical Statistics for Data Scientists: 50 Essential	
/. Concepts", 3rd Edition, O'Reilly, 2017	
8. Hector Guerrero, "Excel Data Analysis: Modelling and Simulation", Springer Internation	onal
Publishing, 2nd Edition, 2019	
9. NPTEL Courses:	
a. Data Science for Engineers - https://onlinecourses.nptel.ac.in/noc23_cs17/preview	
<b>b.</b> Python for Data Science - https://onlinecourses.nptel.ac.in/noc23_cs21/preview	

**LIST OF EQUIPMENTS:** Systems with Anaconda, Jupyter Notebook, Python, Pandas, NumPy, MathPlotlib

22 A MIQO2	DATA ANALYTICS	L	Т	Р	С	
22A11902	(Lab Integrated)	2	0	2	3	
OBJECTIVES	5:					
• To ex	plain the fundamentals of big data and data analytics					
To discuss the Hadoop framework						
• To ex	plain about exploratory data analysis and data manipulation tools					
• To an	alyze and interpret streaming data					
To di	scuss various applications of data analytics					
UNIT I	INTRODUCTION				6+6	
Evolution of Big Data- Definition of Big Data-Challenges with Big Data- Traditional Business						
Intelligence (B	I) versus Big Data- Introduction to big data analytics- Classification	atio	1 of			
Analytics-Anal	ytics Tools- Importance of big data analytics.					
Lab Programs						
<b>6.</b> Given a	data set, explore the features using exploratory data analysis usin	<u>g Py</u>	/tho	n/R		
UNIT II	HADOOP FRAMEWORK				6+6	
Introducing Ha	doop- RDBMS versus Hadoop-Hadoop Overview-HDFS (Hado	op I	Disti	ribu	ted	
File System)- F	Processing Data with Hadoop- Managing Resources and Applicat	tions	s wi	th		
Hadoop YARN	- Interacting with Hadoop Ecosystem.					
Lab Programs						
4. Set up	a pseudo-distributed, single-node Hadoop cluster backed by	,∕th	e H	lado	op	
Distribu	ited File System, running on Ubuntu Linux. After successful insta	allat	ion	on c	one	
node, c	onfiguration of a multi-node Hadoop cluster.					
5. MapReduce application for word counting on Hadoop cluster						
6. Implem	6. Implement an MR program that processes a given dataset					
7. Implement an MR program that processes a weather dataset R						
UNIT III	EXPLORATORY DATA ANALYSIS	1			6+6	

அறிவே

approxim.

EDA fundamentals – Understanding data science – Significance of EDA – Making sense of data – Comparing EDA with classical and Bayesian analysis – Software tools for EDA –Data transformation techniques - Introduction to NoSQL – MongoDB: RDBMS Vs MongoDB – Data Types – Query Language – Hive – Hive Architecture – Data Types – File Formats – Hive Query Language (HQL) – RC File Implementation – User Defined Functions.

# Lab Programs:

- 4. Implement an application that stores big data in Hbase / MongoDB / NoSQL / Pig using Hadoop / R.
- 5. Apply Bayesian and SVM techniques on Iris and Diabetes data set.
- 6. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API
- 7. Implement the following using Hadoop, Map Reduce, HDFS, Hive:
  - a. Perform setting up and Installing Hadoop in its two operating modes: pseudo distributed and fully distributed.
  - b. Implement the following file management tasks in Hadoop: adding files and directories, retrieving files and Deleting files.
  - c. (i)Performing a MapReduce Job for word search count (look for specific keywords ina file)

(ii) Implement stop word elimination problem: Input a large textual file containing one sentence per line and a small file containing a set of stop words (one stop word per line) and save the results in an output textual file containing the same sentences of the large input file without the words appearing in the small file.

# d. Implement a MapReduce program that processes a weather data set to:

- i. Find average, max and min temperature for each year in National Climate DataCentre data set.
- ii. Filter the readings of a set based on value of the measurement. The programmust save the line of input files associated with a temperature value greater than
  - 30.0 and store it in a separate file.
- e. Install, deploy & configure Apache Spark cluster. Run Apache Spark applicationsusing Scala.
- f. Install and run Hive then use Hive to create, alter, and drop databases, tables, views, functions, and indexes.

UNIT IV	MINING DATA STREAMS	6+6
The data stream	n model – stream queries-sampling data in a stream-general streaming problem	m-
filtering stream	s-analysis of filtering- dealing with infinite streams- Counting Distance Elem	nents
in a Stream – E	Estimating Moments – Counting Ones in Window – Decaying Windows.	
Lab Programs		
3. Implem	ent the following algorithms on realtime stream data sets.	
a.	Support Vector Machine	
b.	Decision tree classifier	
с.	Clustering Algorithms	

**4.** Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API

UNIT V	APPLICATIONS		6+6

Application: Sales and Marketing – Industry Specific Data Mining – microRNA Data Analysis Case Study – Credit Scoring Case Study – Data Mining Nontabular Data.

# Lab Programs:

1. Solve numerical problems on Eigen Value, Eigen Vector, etc. to understand the workingprinciples of mining techniques.

2. Mini Project: The project should contain the following components

- Realtime dataset
- Data preparation & Transformation
- Handling missing Data
- Data Storage
- Algorithm for data analytics

Data visualization: Charts, Heatmap, Crosstab, Treemap

### **TOTAL: 30+30 = 60 PERIODS**

### **OUTCOMES:**

### At the end of this course, the students will be able to:

**CO1:** Explain the fundamentals of big data and data analytics

**CO2:** Discuss the Hadoop framework

**CO3:** Explain about exploratory data analysis and data manipulation tools

**CO4:** Analyse and interpret streaming data

**CO5:** Illustrate various applications of data analytics

### **TEXT BOOKS:**

- 2. Subhashini Chellappan, Seema Acharya, "Big Data and Analytics", 2nd edition, Wiley Publications, 2019.
- 3. Suresh Kumar Mukhiya and Usman Ahmed, "Hands-on Exploratory Data Analysis with Python", Packt publishing, March 2020.
- 4. Jure Leskovek, Anand Rajaraman and Jefrey Ullman," Mining of Massive Datasets. v2.1", Cambridge University Press, 2019.
- 5. Glenn J. Myatt, Wayne P. Johnson, Making Sense of Data II : A Practical Guide ToData Visualization, Advanced Data Mining Methods, and Applications, Wiley 2009.

- 1. Nelli, F., Python Data Analytics: with Pandas, NumPy and Matplotlib, Apress, 2018.
- 2. Bart Baesens," Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", John Wiley & Sons, 2014
- 3. Min Chen, Shiwen Mao, Yin Zhang, Victor CM Leung, Big Data: Related Technologies, Challenges and Future Prospects, Springer, 2014.
- 4. Michael Minelli, Michele Chambers, Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends", John Wiley & Sons, 2013.

22 A M002	SOCIAL NETWORK ANALYTICS	L	Т	P C	С
22AW1903	SOCIAL NETWORK ANALTIICS	3	0	0	3
<b>OBJECTIVES</b>	:				
To outlin	ne the components of the social network.				
• To elaborate the modeling and visualization of the social network.					
• To classify descriptive and inferential methods.					
To discu	ss about the evolution of the social network.				
To illust	rate the applications in real time systems.				
UNIT I	INTRODUCTION				9
Basics of Socia	l Network Analysis: Introduction- The Social network and Represe	enta	tion	-Ty	ypes of

Networks-Network parts and Level of Analysis-Networks as Social Structure and Institution- Theoretical Assumptions-Causality in Social Network Studies- A Brief History of Social Network Analysis-Mathematical Foundations: Graphs-Paths and components-Adjacency matrices-Ways and modes-Matrix products-Sources of network data-Types of nodes and types of ties- Data Collection: Network questions-Question formats-Interviewee burden-Data collection and reliability-Archival data collection-Data from electronic sources.

UNIT II

MODELING AND VISUALIZATION

Data Management: Data import-Cleaning network data- Data transformation-Normalization-Cognitive social structure data-Matching attributes and networks-Converting attributes to matrices-Data export,-Multivariate Techniques Used in Network Analysis: Multidimensional scaling-Correspondence analysis-Hierarchical clustering,- Visualization: Layout-Embedding node attributes-Node filtering-Ego networks-Embedding tie characteristics-Visualizing network change-Exporting visualizations-Closing comments.

#### UNIT III **DESCRIPTIVE AND INFERENTIAL METHODS**

Descriptive Methods in Social Network Analysis: Graph and Matrix-Social Network Representation -Density - Centrality, Centralization and Prestige- Cliques - Multidimensional Scaling(MDS) and Dendogram - Structural Equivalence - Two mode Networks and Bipartite Matrix-Inferential Methods in Social Network Analysis: Permutation and QAP (Quadratic Assignment Procedure) Correlation-P* or Exponential Random Graph Model(ERGM).

9

9

9

**EVOLUTION UNIT IV** 

Evolution in Social Networks - Framework - Tracing Smoothly Evolving Communities - Models and Algorithms for Social Influence Analysis - Influence Related Statistics - Social Similarity and Influence - Influence Maximization in Viral Marketing - Algorithms and Systems for Expert Location in Social Networks - Expert Location without Graph Constraints - with Score Propagation - Expert Team Formation - Link Prediction in Social Networks - Feature based Link Prediction - Bayesian Probabilistic Models - Probabilistic Relational Models.

UNIT V **APPLICATIONS** 

A Learning Based Approach for Real Time Emotion Classification of Tweets, A New Linguistic Approach to Assess the Opinion of Users in Social Network Environments, Explaining Scientific and Technical Emergence Forecasting, Social Network Analysis for Biometric Template Protection **TOTAL: 45 PERIODS** 

### **OUTCOMES:**

# At the end of this course, the students will be able to:

**CO1:** Outline the internal components and terminology of the social network.

**CO2:** Illustrate the fundamental exploratory multivariate techniques and visualizing network data.

CO3: Discuss most common descriptive and inferential statistical tools available.

**CO4:** Discuss about the evolution of the social network.

**CO5:** Illustrate the real time applications of social network analysis.

**CO6:** Apply the methods in Social Network Analysis to solve real world problems.

### **TEXT BOOKS:**

- 1. Song Yang, Franziska B. Keller, "Social Network Analysis Methods and Examples", SAGE Publications Inc. 2017.
- 2. Stephen P Borgatti, Martin G. Everett, Jeffrey C. Johnson, "Analyzing Social Networks", Second Edition, 2017.

- 1. Charu C. Aggarwal, "Social Network Data Analytics", Springer; 2014.
- 2. Przemyslaw Kazienko, Nitesh Chawla, "Applications of Social Media and Social Network Analysis", Springer, 2015.
- 3. Ajith Abraham, Aboul Ella Hassanien, Vaclav Snasel, "Computational Social Network Analysis: Trends, Tools and Research Advances", Springer, 2012.
- 4. Borko Furht, "Handbook of Social Network Technologies and Applications", Springer, 1st edition, 2011.

5. Guandong Xu, Yanchun Zhang and Lin Li, "Web Mining and Social Networking – Techniques and applications", Springer, 1st edition, 2012.

		L	T ]	P	C	
22AM904	TEXT AND SPEECH ANALYTICS	3	0 (	)	3	
OBJECTIVE	5:					
• To int	roduce the tools and techniques for performing text and speech analyt	ics i	n div	erse	e	
conte	xts.					
• To un	derstand the tools and technologies involved in developing text and sp	beec	h app	lıca	tions.	
• 10 de	monstrate the use of computing for building applications in text and s	peec	n pro	ces	sing.	
• To us • To an	nly advanced speech recognition methodologies in practical application	ing s	ysten	15.		
	TEXT PROCESSING	<i><i>m</i>₅.</i>			9	
Speech and L	anguage Processing - Regular Expression - Text normalization	– E	dit D	oista	ance -	
Lemmatization – Stemming – N-gram Language Models - Vector Semantics and Embeddings.						
UNIT II	TEXT CLASSIFICATION				9	
Text Classifica	tion Tasks – Language Model – Neural Language Models – RNNs as	La	nguag	e N	Iodels	
- Transformers	and Large Language Models.					
UNIT III	QUESTION ANSWERING AND DIALOGUE SYSTEMS				9	
Information R	etrieval – Dense Vectors – Neural IR for Question Answering – Ev	alua	ting l	Ret	rieval-	
based Question	n Answering – Frame-based Dialogue Systems – Dialogue Acts and	1 Di	alogu	le S	state –	
Chatbots – Dia	logue System Design.				0	
	TEXT TO SPEECH SYNTHESIS				9	
Automatic Spe	reprint a contraction for ASR – Feature Extraction for ASR: Log Mel S	pect	rum ·	- 2	peecn	
LINIT V	SPEECH RECOGNITION	11 1 2	ISKS.		0	
LPC for speed	recognition - Hidden Markov Model (HMM) - Training procedure f	or H	IMM-	. 511	) hword	
unit model ba	sed on HMM - Language models for large vocabulary speech rec	ogn	ition	- (	)verall	
recognition sys	tem based on subword units - Context dependent subword units- Sema	intic	post	pro	cessor	
for speech reco	inition.		1	1		
	TOT	AL:	45 P	ER	IODS	
OUTCOMES						
At the end of	this course, the students will be able to:					
CO1: App	y the fundamental techniques in text processing for various NLP tasks	<b>S</b> .				
CO2: Impl	ement advanced language models and improve text classification accu	iracy	у.			
CO3: Desi	gning text processing systems using state-of-the-art techniques.					
CO4: Desi	y advanced speech recognition methodologies in practical application	c				
<b>CO5:</b> App.	information Retrieval Techniques to build and evaluate text processing	s. g sv	stems			
TEXT BOOK	S:	5 0 7		•		
1. Jurafsky,	D. and J. H. Martin, Speech and language processing: An Introduction	to l	Natura	al		
Language	Processing, Computational Linguistics, and Speech Recognition Pear	son	Publi	cati	on,	
Third Edit	ion, 2022.					
2. Lawrence Recognition	Rabiner, Biing-Hwang Juang and B.Yegnanarayana, "Fundamentals on", Pearson Education, 2009.	of Sj	peech			
REFERENC	ES:					
1. John Atki	nson-Abutridy, Text Analytics: An Introduction to the Science and Ap	plic	ation	s of	•	
Unstructu	red Information Analysis, CRC Press, 2022.					
2. Jim Schw	bebel, NeuroLex, Introduction to Voice Computing in Python, 2018					
	Q5					

- 3. Lawrence R. Rabiner, Ronald W. Schafe, Theory and Applications of Digital Speech Processing, First Edition, Pearson, 2010.
- 4. Srinivasa-Desikan, Bhargav. Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd, 2018.

		Т	Т	D	C
22AM905	IMAGE AND VIDEO ANALYTICS	<u> </u>	0	Г 0	$\frac{c}{3}$
OBJEC	TIVES:		U	v	
The Course v	vill enable learners to:				
• To ur	nderstand the basics of image processing techniques for computer	visio	n an	d vic	leo
analy	sis.				
• To ill	ustrate the techniques used for image pre-processing.				
• To di	scuss the various image Segmentation techniques.				
• To ur	iderstand the various Object recognition mechanisms.				
• To el	aborate on the motion analysis techniques for video analytics.				
UNIT I	INTRODUCTION				9
Computer Vis	ion – Image representation and image analysis tasks - Image represent	ations	-di	gitiza	tion
– properties –	color images - Data structures for Image Analysis - Levels of image	data 1	repre	senta	tion
- Traditional and Hierarchical image data structures.					
UNIT II	IMAGE PRE-PROCESSING				9
Pixel brightne	ss transformations - Geometric transformations - Local pre-processing	g - Ima	ige si	nootł	ning
- Edge detect	ors - Zero-crossings of the second derivative - Scale in image proce	ssing	- Ca	nny e	dge
detection - Pa	arametric edge models - Edges in multi-spectral images - Local pr	e-proc	cessii	ng in	the
frequency do	nain - Line detection by local pre-processing operators - Detection	of co	rners	(inte	rest
points) - Dete	ction of maximally stable extremal regions - Image restoration.				
UNIT III	SEGMENTATION				9
Thresholding	- Edge-based segmentation - Region-based segmentation - Match	ning -	Eva	aluati	on
issues in segn	nentation - Mean shift segmentation - Active contour models.				
UNIT IV	OBJECT RECOGNITION				9
Knowledge re	presentation - Statistical pattern recognition - Neural nets - Syntactic	patter	n rec	ognit	ion -
Recognition a	s graph matching - Optimization techniques in recognition - Fuzzy s	ystem	s - B	oosti	ng in
pattern recogn	ition - Random forests - Image understanding control strategies.				
UNIT V	MOTION ANALYSIS				9
Differential m	notion analysis methods - Optical flow - Analysis based on correspon	ndenc	e of	intere	st
points - Detec	tion of specific motion patterns - Video tracking - Motion models to a	aid tra	cking	g	
		TAL:	45 F	PERI	ODS
OUTCO	OMES:				
Upon comp	letion of the course, the students will be able to:				
COI: Unders	tand the basics of image processing techniques for computer vision ar	id vid	eo ar	nalysi	s.
CO2: Illustrat	te the techniques used for image pre-processing.				
CO3: Analyzo	e the various image Segmentation techniques.				
CO4: Unders	tand the various Object recognition mechanisms.				
<b>COS:</b> Elaborate on the motion analysis techniques for video analytics.					
<b>CO6:</b> Apply image processing techniques in real-world applications.					
1 MU	NG: Contra Vaclari Illarica Dagan Darita (Turras Drassin A. 1. '	or -1 7	1 1		
I. Millan	Sonka, vaciav Hiavac, Koger Boyle, "Image Processing, Analysis," And edition Thomson Learning 2012	, and I	viaci	iine	
	<b>ENCES</b>				
KEFEK	ENCES:				

- 1. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer Verlag London Limited, 2011.
- 2. Caifeng Shan, Fatih Porikli, Tao Xiang, Shaogang Gong, "Video Analytics for Business Intelligence", Springer, 2012.
- 3. D. A. Forsyth, J. Ponce, "Computer Vision: A Modern Approach", Pearson Education, 2003.
- 4. E. R. Davies, "Computer & Machine Vision", Fourth Edition, Academic Press, 2012.

22 A MOO6	STREAM PROCESSING AND ANAL VTICS	L	Τ	Р	С
22AW1900	STREAM TROCESSING AND ANALTTICS	3	0	0	3
OBJEC	TIVES:				
The Course v	vill enable learners to:				
To out	line the framework for real time stream processing.				
• To lea	rn various algorithms for data streaming.				
To ide	ntify frequent item sets by mining from data streams.				
To intr	oduce approaches to evaluate stream learning algorithms.				
To use	tools for distributed data flow management.				
• To des	ign solutions to stream processing problems.				
UNIT I	INTRODUCTION TO DATA STREAMS				9
Data Stream M	odels – Bounds of Random variables – Poisson Process – Maintaining Simp	le Stat	istics	from	Data
Streams – Slic	ling Window and computing statistics over sliding windows - Data Sy	nopsis	s – S	Sampli	ng –
Histograms – V	Vavelets – DFT - Change Detection: Tracking Drifting Concepts - Monitoring	g the L	earni	ng Pro	cess.
UNIT II	STREAMING ALGORITHMS				9
Clustering Exa	mples: Basic Concepts - Partitioning Clustering – Hierarchical Clustering - M	licro C	Cluste	ring –	Grid
Clustering - C	lustering Variables - The Very Fast Decision Tree Algorithm (VFDT) -	The I	Base	Algor	ithm,
Analysis of the	e VFDT Algorithm, Extensions to the Basic Algorithm: Processing C	Continu	lous	Attrib	outes,
Functional Tre	e Leaves, Concept Drift.				
	FREQUENT PATTERN MINING				9
Introduction -	- Heavy Hitters - Mining Frequent Itemsets from Data Streams - La	andma	ark V	Vindo	WS -
Mining Recer	it Frequent Itemsets - Frequent Itemsets at Multiple Time Granularitie	s - Se	quen	ce Pa	ttern
Mining - Rese	ervoir Sampling for Sequential Pattern Mining over data stream.	_			<del></del>
UNIT IV	EVALUATING STREAMING ALGORITHMS	_			9
Learning from	n Data Streams - Evaluation Issues - Design of Evaluation Exper	iment	s - E	Evalua	ation
Metrics - Con	parative Assessment - Evaluation Methodology in Non-Stationary En	nviror	imen	ts.	1
UNIT V	DATA FLOW MANAGEMENT				9
Distributed Da	ta Flows – Apache Kafka – Apace Flume - Processing Streaming Data – Sto	ring S	tream	ning D	ata –
Delivering Stre	eaming Metrics.				
		TAL:	45 P	PERI	JDS
OUTCO	OMES: OLIGAL OLOD				
Upon comple	tion of the course, the students will be able to:				
<b>CO1:</b> Outline	the framework for real time stream processing.				
CO2: Elabora	te various algorithms for data streaming.				
CO3: Illustrat	te frequent item sets by mining from data streams.				
CO4: Apply t	he metrics and procedures to evaluate a model.				
<b>CO5:</b> Use tools for distributed data flow management.					
CO6: Develo	p solutions for real-world problems using streaming data.				
TEXT BOOI	KS:				
1. Joao C	Gama, "Knowledge Discovery from Data Streams", CRC Press, 2010.				
2. Byron	Ellis, Real-Time Analytics: Techniques to Analyze and Visualize Str	reamir	ng Da	ata, Fi	rst
Editio	n, WILEY Big Data Series, 2014.				
REFER	ENCES:				

- 1. Andrew Psaltis, Streaming Data: Paul Lewis, First Edition, Manning Publication, 2017.
- 2. Bugra Gedik, Deepak S. Turaga, Henrique C. M. Andrade, Fundamentals of Stream Processing: Application Design, Systems, and Analytics, Cambridge University Press, 2014.
- 3. Charu C. Aggarwal, "Data Streams: Models and Algorithms", Kluwer Academic Publishers, 2007.
- 4. David Luckham, "The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems", Addison Wesley, 2002.

# **VERTICAL II – APPLIED AI**

		L	Т	P	С		
22AM907	AI in BLOCK CHAIN		0	0	3		
<b>OBJECTIVES:</b>		I			<u>I</u>		
• To acquire knowledge in Blockchain Technologies.							
To understa	and how block chain and AI can be used to innovate.						
To elaborat	e Cryptocurrencies and AI.						
To develop	applications using blockchain.						
To understa	and the limitations and future scope of AI in Blockchain.						
UNIT I	INTRODUCTION TO BLOCKCHAIN			9			
Overview – Block	chain vs Distributed Ledger Technology vs Distributed Databases	s – P	ubli	c vs			
private vs permissi	oned blockchains – Privacy in blockchains – Blockchain platforn	1s -	Нур	erled	ger		
– Hashgraph, Cord	a – IOTA - Consensus Algorithms – Building DApps with block	cha	in to	ols.	-		
UNIT II	BLOCKCHAIN AND ARTIFICIAL INTELLIGENCE			9			
Introduction to the	AI landscape - AI and Blockchain driven Databases - Centralize	d vs	Dis	tribu	ted		
data – Blockchain	data – Big data for AI analysis – Global databases – Data Manage	eme	nt in	a DA	40 -		
Benefits of combin	ing blockchain and AI – Aicumen Technologies -Combining blo	ckcł	nain	and A	AI		
to humanize digita	l interactions.						
UNIT III	CRYPTOCURRENCY AND AI			9			
Bitcoins – Ethereu	m - Role of AI in cryptocurrency – cryptocurrency trading – Mak	ing	price	e			
predictions with A	I – Market making – future of cryptocurrencies.						
UNIT IV	DEVELOPING BLOCKCHAIN PRODUCTS			9			
Development Life	Cycle of a DIApp – Designing a DIApp – Developing a DIApp –	Tes	sting	; —			
Deploying – Monit	toring – Implementing DIApps.						
UNIT V	LIMITATIONS AND FUTURE OF AI WITH BLOCKCHA	IN		9			
Technical Challeng	ges – Business Model Challenges – Scandals and Public perception	)n –	Gov	vernn	ient		
Regulation – Priva	cy Challenges for Personal Records – Convergence of AI with Bl	ock	chai	n –			
Future – Enterprise							
	ΤΟΤΑ	L: 4	45 P	ERI	ODS		
OUTCOMES:							
At the end of this	course, the students will be able to:						
CO1: Acquire	knowledge in Blockchain Technologies.						
CO2: Understa	nd how block chain and AI can be used to innovate.						
CO3: Elaborate	e Cryptocurrencies and AI.						
CO4: Develop	applications using blockchain.						
CO5: Understa	nd the limitations and future scope of AI in Blockchain.						
CO6: Elaborate	e the various applications of AI in Blockchain.						
<b>TEXT BOOKS:</b>	TEXT BOOKS:						

- 1. Ganesh Prasad Kumble, Anantha Krishnan, "Practical Artificial Intelligence and Blockchain: A guide to converging blockchain and AI to build smart applications for new economies", Packt Publications, 2020.
- 2. Melanie Swan, "Block Chain: Blueprint for a New Economy", O'Reilly, 2015.

- 1. Daniel Drescher, "Block Chain Basics", Apress; 1st edition, 2017.
- 2. Salman Baset, Luc Desrosiers, Nitin Gaur, Petr Novotny, Anthony O'Dowd, Venkatraman Ramakrishna, "Hands-On Block Chain with Hyperledger: Building Decentralized Applications with Hyperledger Fabric and Composer", Import, 2018.

	AUCMENTED AND VIRTUAL REALITY	L	Т	Р	C			
22AM908	(Lab Integrated)	2	0	2	3			
OBJECTIV	/ES:	-	v	_				
The Course will enable learners to:								
• Get exposure on Augmented Reality.								
<ul> <li>Introduce Virtual Reality and input and output devices</li> </ul>								
• Acq	aire knowledge on computing architectures and modelling.							
• Expl	ore Virtual Reality programming and human factors.							
• Lear	n various applications of Virtual Reality.							
UNIT I	AUGMENTED REALITY (AR)				6+6			
Introduction	to Augmented Reality-Computer vision for AR-Intera	ction-	Mod	elling	g and			
Annotation-	Navigation-Wearable devices.			ć	2			
List of Exe	rcises:							
1.Develop s	imple AR Application like snapchat.							
2.Develop	AR enabled simple applications like human anatomy visua	alizati	on, I	DNA	/RNA			
structure vis	ualization.							
UNIT II	INTRODUCTION TO VIRTUAL REALITY (VR) AN	D INI	PUT		6+6			
	AND OUTPUT DEVICES							
Introduction	: The three I's of Virtual Reality Early commercial VR t	echno	ology	- Th	e five			
classic com	ponents of a VR system. Input devices: Three-Dimension	al pos	sition	trac	kers -			
tracker perf	ormance parameters - ultrasonic trackers - optical tracker	ers -	Navig	gatio	n and			
manipulatio	n interfaces - gesture interfaces. Output devices: graphics dis	splays	- Iar	ge-vo	olume			
displays - so	bund displays.							
List of Exe	relses:							
2 Use the n	rimitive objects and apply various projection types by handli	ing ca	mera					
	COMPLITING ARCHITECTURES AND MODELING	$\mathbf{OF}$			6+6			
	SYSTEM		1 1 1		010			
Computing	architectures for VR: The rendering pipeline - The graphics	s rend	ering	nine	eline -			
The haptics	rendering pipeline - PC graphics architecture - PC graphics as	celer	ators	- Gra	aphics			
benchmarks	- Distributed VR architectures - Multipipeline synchron	nizati	on -	Cold	cated			
rendering p	pelines. Modeling: geometric modeling - kinematics mod	leling	- ph	ysica	al and			
behavior mo	delling		-	-				
List of Exe	cises:							
1.Download	objects from asset store and apply various lighting and shad	ling e	ffects	•				
2. Model th	ree dimensional objects using various modelling technique	es and	l app	ly ter	xtures			
over them								

UNIT IVVR PROGRAMMING AND HUMAN FACTORS6	5+6	
------------------------------------------	-----	--

Toolkits and scene graphs - WorldToolKit - Model geometry and appearance - The WTK scene graph - Sensors and action functions - WTK networking - Java 3D - Model geometry and appearance - Java 3D scene graph - Sensors and behaviors - Java 3D networking - WTK and Java 3D performance comparison –Human factors in VR: Methodology and terminology - user performance studies - VR health and safety issues - VR and society

# List of Exercises:

1.Create three dimensional realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.

2. Add audio and text special effects to the developed application

UNIT V	APPLICATIONS OF VR	6+6
Medical Ap	plication of VR - Virtual anatomy-Triage and diagnostic - Surgery -	VR in
education -	VR and the Arts - Entertainment applications of VR - military VR applications	tions -
Army use of	VR - VR applications in the Navy - Air force use of VR - Applications of	VR in
Robotics - R	obot programming - Robot teleoperation	

# List of Exercises:

1.Develop VR enabled applications using motion trackers and sensors incorporating full haptic interactivity.

2.Develop VR/AR enabled applications with interactivity like E learning environment, Virtual walkthroughs and visualization of historic places. **TOTAL =30+30=60 PERIODS** 

# OUTCOMES:

Upon completion of the course, the students will be able to:

- Understand Augmented Reality.
- Explore different input and output devices used in Virtual Reality system.
- Model the VR system.
- To learn about Google Toolkit's and Scene Graph.
- Apply VR in various fields.

# **TEXT BOOKS:**

- 1. Dieter Schmalstieg, Tobias Hollerer, "Augmented Reality: Principles & Practice", Addison Wesley, 2016.
- Grigore C. Burdea, Philippe Coiffet, "Virtual reality technology", Wiley, Second Edition, 2017.

# **REFERENCE BOOKS:**

- 1.Sherman, William R & Craig, Alan B, "Understanding Virtual reality", Elsevier India Private Limited, Noida, 2018.
- 2.Charles Palmer, John Williamson, "Virtual Reality Blueprints: Create compelling VR experiences for mobile", Packt Publisher, 2018.

# SOFTWARE REQUIREMENTS:

Unity, Maya/3DS MAX/Blender.

# INTELLIGENT ROBOTS

L	Т	Р	С
3	0	0	3

# **OBJECTIVES:**

22AM909

- To understand the basics of Intelligent Robots.
- To discuss the Autonomous capabilities and Software architecture.
- To elaborate the Reactive Functionality of intelligent Robots.
- To use the various sensors in building Intelligent Robots.

To illustrate the Deliberative Functionality of intelligent Robots. • **UNIT I INTRODUCTION** 9 Overview- Definition – Components - Three Modalities – Need for Intelligent Robots – History of AI Robotics - Industrial Manipulators - Mobile Robots - Drones - Cognitive Systems. **UNIT II AUTOMATION AND AUTONOMY** 9 Autonomous Capabilities – Bounded Rationality – Automation and Autonomy – Programming Style - Hardware Design - Types of Functional Failures - Autonomous Capabilities. Types of Software Architectures – Operational Architectures – Components of a Telesystem – Human Supervisory Control. **UNIT III REACTIVE FUNCTIONALITY** Behaviours : Agency and Marr's Computational Theory – Animal Behaviours – Schema Theory. Perception: Action-Perception cycle – Functions. Behaviour Coordination – Function – Cooperating Methods – Competing Methods – Sequences. SENSORS AND SENSING **UNIT IV** 9 Locomotion: Mechanical, Biomimetic, Legged Locomotion - Action Selection - Sensors and Sensing Model – Choosing – Range Sensing: Stereo – Depth from X – Sonar or Ultrasonics. **DELIBERATIVE FUNCTIONALITY** 9 **UNIT V** Deliberation – Strips – Navigation – Spatial Memory – Types of Path Planning – Configuration Space – Metric Path Planning – Motion Planning – Localization – Feature based Localization – Iconic Localization – Static vs Dynamic Environments – Simultaneous Localization and Mapping - Terrain Identification and Mapping - Scale and Traversability - Exploration - Mutlirobot Systems and AI -Human-Robot Interaction and areas of AI. **TOTAL: 45 PERIODS OUTCOMES:** At the end of this course, the students will be able to: **CO1**: Understand the basics of Intelligent Robots. **CO2**: Design and implement Autonomous capabilities in Robotics systems. CO3: Elaborate the Reactive Functionality of intelligent Robots. **CO4**: Use the various sensors in building Intelligent Robots. **CO5**: Illustrate the Deliberative Functionality of intelligent Robots. **CO6**: Analyse the various applications of AI Robotics. **TEXT BOOKS:** 1. Robin R. Murphy, "Introduction to AI Robotics", MIT Press, Second Edition, 2019. **REFERENCES:** 1. Francis X. Govers, "Artificial Intelligence for Robotics: Build Intelligent Robots that Perform Human Tasks Using AI Techniques", Packt Publishing, 2018. 2. Sebastian Thrun, Wolfram Burgard, and Dieter Fox, "Probabilistic Robotics", MIT Press, 2005. 3. Yoon Seok Pyo, Han Cheol Cho, Ryu Woon Jung, and Tae Hoon Lim, "ROS Robot Programming", ROBOTIS Co., Ltd, 2017.

22 A M010	CENEDATIVE AI	L	Т	Р	С
22AW1910	GENERATIVE AI	3	0	0	3
<b>OBJECTIVES:</b>					
Understand th	e basic concepts of Generative AI.				
• Build Generative AI systems to generate outputs of different domains.					
Deploy Gener	ative AI Models.				
Compare and	use the various Large Language Models.				
• Understand th	e basics of Prompt Engineering				

UNIT I	GENERATIVE AI CONCEPTS	9
Introduction to	Generative AI – Deep Learning – Deep Neural Networks – Multi-La	ayer Perceptron –
Convolutional	Neural Network - Autoencoders - Variational Autoencoders - Latent	t Space.
UNIT II	GENERATIVE ADVERSARIAL NETWORKS	9
Deep Convolu	tional GAN (DCGAN) - Wasserstein GAN with Gradient Penalty (W	GAN-GP) -
Conditional G	AN (CGAN) - Autoregressive Models - Long Short-Term Memory N	etwork (LSTM).
UNIT III	FLOW MODELS	9
Normalizing F	lows – RealNVP - Energy-Based Models - Denoising Diffusion Mod	els (DDM).
UNIT IV	LARGE LANGUAGE MODELS	9
Overview of L	LMs - Transformers – GPT – Types of LLMs – Key concepts – other	Transformers – T5
– Generative P	re-Trained Models – Multi-modal Models – DALL.E 2	I
UNIT V	PROMPT ENGINEERING	9
Basics – In-Co	ntext Learning – In-Context Prompting – Techniques – Image Promp	oting – Prompt
Hijacking – Cl	allenges.	
		TAL: 45 PERIODS
OUTCOMES	:	
At the end of	this course, the students will be able to:	
<b>CO1</b> : Und	erstand the basic concepts of Generative AI.	
CO2: Buil	d Generative AI systems to generate outputs of different domains.	
CO3: Dep	oy Generative AI Models.	
<b>CO4</b> : Com	pare and use the various Large Language Models.	
	erstand the basics of Prompt Engineering.	
TEXT DOOL	sy Generative Ai to solve real world applications.	
1 David	D: Foster Concretive Deep Learning 2nd Edition O'Beilly Media 202	3
1. David 2. $\Delta mit B$	abree Generative AL in Action Manning Publication First Edition	5. 2023
REFERENCE	S.	2023.
1 Numa	Dhamani and Maggie Engler, Introduction to Generative AI Manni	ng Publication, First
Edition	2024	ing Fuorieution, Frist
2. Valenti	na Alto. Modern Generative AI with ChatGPT and OpenAI Models	. Packt publications.
2024.		, <b>I</b>
	1	
22CS925	GAME DEVELOPMENT	L T P C
OBJECTIVI		
The Course v	vill enable learners to:	
• To un	ierstand game programming fundamentals.	
• To lea	rn about the processes, mechanics, issues in game design.	
■ ■ To gat	n knowledge of the game design and Artificial infelligence.	

- To gain knowledge of the game design and Artificial intelligence.
  To understand the design and scripting languages of game programming.
  To know about networked games and analyse code for sample games.

UNIT I	INTRODUCTION	9			
Evolution of video game programming-The Game Loop-Time and games-Game objects-2D rendering					
Foundations-S	Sprites-Scrolling-Tile maps-Vectors -Matrices.				
UNIT II	3D GRAPHICS FOR GAMES	9			
3D graphics-	Basics-Coordinate-spaces-Lighting and Shading-visibility-Input Devices-Event b	based			

line segments-Col		middlow	are
	lision geometry-Collision detection-Physics base movement-Physics	IIIIuulew	
UNIT III GA	ME DESIGN AND AI		9
Cameras-Types of	cameras-Perspective projection-Camera implementation-Camera sup	port algo	rithm-
Real AI versus Ga	me AI-Pathfinding-State based behaviours-Strategy and planning.		
UNIT IV US	ER INTERFACE AND SCRIPTING LANGUAGES		9
Menu system-HU	JD elements-Radar-other UI considerations-Scripting languages-Ir	nplemen	ting a
scripting language	e-Tokenization-Syntax Analysis-Code Execution or Generation-Data	a Formats	s-Case
study UI mods in	world of warcraft.		
			-
UNIT V NE	TWORKED GAMES		9
Protocols-Networ	k Topology-Server/Client-Peer-to-Peer-Cheating-Sample game -Sic	de scroll	er for
iOS, Tower defen	ce for PC/Mac-Code Analysis.		
	TOTAL:	<b>45 PER</b>	IODS
<b>OUTCOMES:</b>			
At the end of this	course, the students will be able to:		
CO1: Understand	the fundamentals of game programming.		
<b>CO2:</b> Identify the	processes, mechanics, issues in game design,		
<b>CO3:</b> Analyse the	game design and artificial intelligence.		
<b>CO4:</b> Construct a	basic game engine using UI and scripting languages.		
CO5: Develop co	de for sample games.		
CU6: Understand	the 3D game design		
1 Somiour Mode	ay Come Dramming Algorithms and Tashniques A platfe		montio
I. Samay Made	av, Game Programming Algorithms and rechniques. A pland	orm -Ag	nosuc
Annroach Car	no Design 1 st Edition Addison Wesley Professional 2012	1111 112	,
Approach-Gar	ne Design,1 st Edition, Addison-Wesley Professional,2013.	d Edition	Wilov
Approach-Gar 2. Jouni Smed, H Publications 2	ne Design,1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd	^d Edition,	Wiley
Approach-Gar 2. Jouni Smed, H Publications,2	ne Design,1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017.	^d Edition,	Wiley
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b>	ne Design,1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017.	^d Edition,	Wiley
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition 2014	ne Design,1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Prer	^d Edition, ntice Ha	Wiley
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har	ne Design,1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren	^d Edition, ntice Ha	Wiley 11 3rd
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har	ne Design, 1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren n, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s	^d Edition, ntice Ha t Edition,	Wiley ll 3rd 2011.
Approach-Gar 2. Jouni Smed, H Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har	ne Design, 1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren n, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s	^d Edition, ntice Ha t Edition,	Wiley Il 3rd 2011.
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har	ne Design, 1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s	$\frac{d}{d} \text{ Edition,}$ $\frac{d}{d} \text{ Edition,}$ $\frac{d}{d} \text{ Edition,}$	Wiley Il 3rd 2011.
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har 22CS921	ne Design, 1 st Edition, Addison-Wesley Professional, 2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s INDUSTRIAL IoT	d Edition, ntice Ha t Edition, T P 0 0	Wiley Il 3rd 2011.
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har 22CS921 OBJECTIV	ne Design, 1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s INDUSTRIAL IoT L 3 ES:	$\frac{d}{d} E dition,$	Wiley Il 3rd 2011.
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har 22CS921 0BJECTIV The Course will e	ne Design, 1 st Edition, Addison-Wesley Professional, 2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s INDUSTRIAL IoT L SES: Enable learners to:	d Edition, ntice Ha t Edition, T P 0 0	Wiley Il 3rd 2011. C 3
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har 22CS921 OBJECTIV The Course will e • Understand the	ne Design, 1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IoT</b> <b>ES:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b> <b>Ex:</b>	d Edition, ntice Ha t Edition, T P 0 0	Wiley Il 3rd 2011. C 3
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har <b>22CS921</b> <b>OBJECTIV</b> <b>The Course will e</b> • Understand the • Illustrate the n	ne Design, 1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IOT</b> <b>ES:</b> <b>enable learners to:</b> basic technologies and protocols used in Industrial IoT. nodels and architectures of IIoT.	d Edition, ntice Ha t Edition, T P 0 0	Wiley Il 3rd 2011. C 3
Approach-Gar 2. Jouni Smed, H Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har 22CS921 OBJECTIV The Course will e • Understand the • Illustrate the n • Identify and ap	ne Design,1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IoT</b> L <b>3</b> <b>5</b> <b>5</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	d Edition, ntice Ha t Edition, T P 0 0	Wiley Il 3rd 2011. C 3
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har <b>22CS921</b> <b>OBJECTIV</b> <b>The Course will e</b> • Understand the • Illustrate the n • Identify and ap • Explain the va	ne Design,1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IoT</b> <u>L</u> <b>3</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b>	d Edition, ntice Ha t Edition, T P 0 0	Wiley Il 3rd 2011. C 3
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har <b>22CS921</b> <b>OBJECTIV</b> <b>The Course will e</b> • Understand the • Illustrate the n • Identify and ap • Explain the va • Build solution	ne Design, 1 st Edition, Addison-Wesley Professional, 2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IoT</b> <b>ES:</b> <b>enable learners to:</b> basic technologies and protocols used in Industrial IoT. nodels and architectures of IIoT. ply different sensors for various IIoT applications. rious protocols used in IIoT. s for real-world problems using IIoT.	d Edition, ntice Ha t Edition, T P 0 0	Wiley Il 3rd 2011. C 3
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har <b>22CS921</b> <b>0BJECTIV</b> <b>The Course will e</b> • Understand the • Illustrate the n • Identify and ap • Explain the va • Build solution • Solve real-wor	ne Design, 1 st Edition, Addison-Wesley Professional, 2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IoT</b> <b>ES:</b> <b>enable learners to:</b> be basic technologies and protocols used in Industrial IoT. nodels and architectures of IIoT. ply different sensors for various IIoT applications. rious protocols used in IIoT. s for real-world problems using IIoT. chd problems using IIoT analytics.	d Edition, ntice Ha t Edition, T P 0 0	Wiley 11 3rd 2011. C 3
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har <b>22CS921</b> <b>OBJECTIV</b> <b>The Course will e</b> Understand the Illustrate the n Identify and ap Explain the va Build solution Solve real-wor <b>UNIT I</b>	ne Design, 1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IOT</b> <b>ES:</b> <b>enable learners to:</b> e basic technologies and protocols used in Industrial IoT. nodels and architectures of IIoT. ply different sensors for various IIoT applications. rious protocols used in IIoT. s for real-world problems using IIoT. 1d problems using IIoT analytics. <b>INTERNET OF THINGS (IOT)</b>	d Edition, ntice Ha t Edition, T P 0 0	Wiley Il 3rd 2011. C 3
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har <b>22CS921</b> <b>0BJECTIV</b> <b>The Course will e</b> • Understand the • Illustrate the n • Identify and ap • Explain the va • Build solution • Solve real-wor <b>UNIT I</b> Introduction – Net	ne Design, 1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IoT</b> <b>ES:</b> <b>enable learners to:</b> e basic technologies and protocols used in Industrial IoT. nodels and architectures of IIoT. poly different sensors for various IIoT applications. rious protocols used in IIoT. s for real-world problems using IIoT. <b>INTERNET OF THINGS (IOT)</b> working – Cyber Physical Systems – Evolution of IoT – IoT Networking	d Edition, ntice Ha t Edition, T P 0 0	Wiley Il 3rd 2011. C 3 9 onents
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har <b>22CS921</b> <b>0BJECTIV</b> <b>The Course will e</b> • Understand the • Illustrate the m • Identify and ap • Explain the va • Build solution • Solve real-won <b>UNIT I</b> Introduction – Net - Addressing Stra	ne Design, 1 st Edition, Addison-Wesley Professional, 2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren n, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IOT</b> <b>ES:</b> <b>enable learners to:</b> te basic technologies and protocols used in Industrial IoT. hodels and architectures of IIoT. oply different sensors for various IIoT applications. rious protocols used in IIoT. s for real-world problems using IIoT. the problems using IIoT analytics. <b>INTERNET OF THINGS (IOT)</b> working – Cyber Physical Systems – Evolution of IoT – IoT Networkin tegies – IoT Sensing and Actuation.	$\frac{d}{d} \text{ Edition,}$ $\frac{d}{d} \text{ Edition,}$ $\frac{T}{0} = \frac{P}{0}$ $\frac{1}{0} = \frac{1}{0}$ $\frac{1}{0} = \frac{1}{0}$ $\frac{1}{0} = \frac{1}{0}$	Wiley Il 3rd 2011. C 3 9 onents
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har <b>22CS921</b> <b>OBJECTIV</b> <b>The Course will e</b> • Understand the • Illustrate the n • Identify and ap • Explain the va • Build solution • Solve real-wor <b>UNIT I</b> Introduction – Net - Addressing Stra <b>UNIT II</b>	ne Design, 1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IoT</b> <b>ES:</b> <b>enable learners to:</b> e basic technologies and protocols used in Industrial IoT. nodels and architectures of IIoT. pply different sensors for various IIoT applications. rious protocols used in IIoT. s for real-world problems using IIoT. cld problems using IIoT analytics. <b>INTERNET OF THINGS (IoT)</b> working – Cyber Physical Systems – Evolution of IoT – IoT Networkin tegies – IoT Sensing and Actuation. <b>INDUSTRIAL IoT</b>	d Edition, ntice Ha t Edition, T P 0 0	Wiley Il 3rd 2011. C 3 9 onents 9
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har <b>22CS921</b> <b>0BJECTIV</b> <b>The Course will e</b> • Understand the • Illustrate the n • Identify and ap • Explain the va • Build solution • Solve real-won <b>UNIT I</b> Introduction – Net - Addressing Stra <b>UNIT II</b> Industry 4.0 – IIo	ne Design, 1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IoT</b> <b>ES:</b> enable learners to: e basic technologies and protocols used in Industrial IoT. hodels and architectures of IIoT. ply different sensors for various IIoT applications. rious protocols used in IIoT. s for real-world problems using IIoT. d problems using IIoT analytics. <b>INTERNET OF THINGS (IoT)</b> working – Cyber Physical Systems – Evolution of IoT – IoT Networkin tegies – IoT Sensing and Actuation. <b>INDUSTRIAL IoT</b> T – Industrial Internet Systems – Industrial Sensing – Industrial Proces	$\frac{\mathbf{T}  \mathbf{P}}{0 0}$	Wiley Il 3rd 2011. C 3 9 onents 9 usiness
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har <b>22CS921</b> <b>0BJECTIV</b> <b>The Course will e</b> • Understand the • Illustrate the n • Identify and ap • Explain the va • Build solution • Solve real-wor <b>UNIT I</b> Introduction – Net - Addressing Stra <b>UNIT II</b> Industry 4.0 – IIoT Models and Reference	ne Design, 1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren h, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IoT</b> <b>ES:</b> <b>enable learners to:</b> te basic technologies and protocols used in Industrial IoT. nodels and architectures of IIoT. poly different sensors for various IIoT applications. rious protocols used in IIoT. s for real-world problems using IIoT. th problems using IIoT analytics. <b>INTERNET OF THINGS (IoT)</b> working – Cyber Physical Systems – Evolution of IoT – IoT Networkin tegies – IoT Sensing and Actuation. <b>INDUSTRIAL IoT</b> T – Industrial Internet Systems – Industrial Sensing – Industrial Proces ence Architecture.	$\frac{\mathbf{T}  \mathbf{P}}{0 0}$	Wiley Il 3rd 2011. C 3 Onents 9 usiness
Approach-Gar 2. Jouni Smed, F Publications,2 <b>REFERENCES:</b> 1. Ernest Adams Edition,2014. 2. JungHyun Har <b>22CS921</b> <b>OBJECTIV</b> <b>The Course will 6</b> Understand the Understand the Understand the Illustrate the n Identify and ap Explain the va Build solution Solve real-wor UNIT I Introduction – Net - Addressing Stra UNIT II Industry 4.0 – IIoT Models and Referent UNIT III	ne Design, 1 st Edition, Addison-Wesley Professional,2013. Iarri Hakonen, Algorithms and Networking for Computer Games, 2 nd 017. s and Andrew Rollings, "Fundamentals of Game Design", Pren a, "3D Graphics for Game Programming", Chapman and Hall/CRC, 1s <b>INDUSTRIAL IoT</b> <b>ES:</b> <b>enable learners to:</b> be basic technologies and protocols used in Industrial IoT. nodels and architectures of IIoT. poly different sensors for various IIoT applications. rious protocols used in IIoT. s for real-world problems using IIoT. the problems using IIoT analytics. <b>INTERNET OF THINGS (IoT)</b> working – Cyber Physical Systems – Evolution of IoT – IoT Networkin tegies – IoT Sensing and Actuation. <b>INDUSTRIAL IoT</b> T – Industrial Internet Systems – Industrial Sensing – Industrial Procesence Architecture. <b>SENSORS AND ACTUATORS</b>	$\frac{\mathbf{T}  \mathbf{P}}{0 0}$	Wiley Il 3rd 2011. C 3 9 onents 9 ssiness

Sensors – Sensor	Characteristics - Sensorial Deviations - Sensing Types - Considerations - Act	uators
<ul> <li>Actuator Types</li> </ul>	– Actuator Characteristics.	1
UNIT IV	PROTOCOLS	9
Processing topolo	ogies and types - Connectivity Technologies - IEEE 802.15.4 - Zigbee - RFID -	LoRa
- Wi-Fi - Comm	unication Technologies - Constrained nodes - Networks - Infrastructure Proto	cols -
IPV6 – Discover	y Protocols – MQTT – MQTT-SN – SOAP - REST.	
UNIT V	IIOT ANALYTICS AND APPLICATIONS	9
IIoT Analytics -	Categorization - Use - Challenges - Mapping of analytics with IIRA Architec	ture –
Deployment of A	nalytics - Health care applications in industries - Inventory Management and Q	uality
Control – Plant S	afety and Security.	
	TOTAL: 45 PER	IODS
OUTCOM	ES:	
Upon complet	ion of the course, the students will be able to:	
CO1: Elaborate	he basic technologies and protocols used in Industrial IoT.	
CO2: Illustrate th	ne models and architectures of IIoT.	
CO3: Interpret a	nd apply different sensors for various IIoT applications.	
CO4: Explain the	e various protocols used in IIoT.	
CO5: Build solut	ions for real-world problems using IIoT.	
CO6: Solve real-	world problems using IIoT analytics.	
<b>TEXT BOOKS:</b>		
1. S. Misra,	A. Mukherjee, and A. Roy, Introduction to IoT. Cambridge University Press, 20	)20.
2. S. Misra,	C. Roy, and A. Mukherjee, Introduction to Industrial Internet of Things and Ind	ustry
4.0. CRC	Press, 2020.	
REFERENCES		
1. Daniel M	inoli, Building the Internet of Things with IPv6 and MIPv6: The Evolving Worl	d of
M2M Co	nmunications,1st Edition, Wiley Publications, 2013.	
2. Dieter Uc	kelmann, Mark Harrison, Florian Michahelles, Architecting the Internet of Thin	ıgs,
Industry 4	.0: The Industrial Internet of Things, Springer-Verlag Berlin Heidelberg, 2011.	
3. Arshdeep	Bahga, Vijay Madisetti, "Internet of Things - A hands-on approach", Universit	ies

- Press, 2015.
- 4. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton, Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things", CISCO Press, 2017.
- 5. https://onlinecourses.nptel.ac.in/noc20_cs69/preview

#### **VERTICAL III – AI AND CLOUD** ດເພາ 'πιΩ

22CS907		CLOUD FOUNDATIONS L	Т	P	С
		(Lab Integrated) 2	0	2	3
OBJECTIVES	:				
• To d	les	cribe the different ways a user can interact with Cloud.			
• To d and	lisc uns	cover the different compute options in Cloud and implement a variety o structured storage models.	of str	uct	ured
• To c secu	on rit	fer the different application managed service options in the cloud and o y in the cloud is administered in Cloud.	outli	ine	how
• To d and	len ma	nonstrate how to build secure networks in the cloud and identify cloud magement tools.	auto	oma	ation
• To d	lete	ermine a variety of managed big data services in the cloud.			
UNIT I		INTRODUCTION TO CLOUD			6+6
Cloud Computin	ng	- Cloud Versus Traditional Architecture - IaaS, PaaS, and SaaS - Cloud A	Arch	ite	cture
		104			

- The GCP Console - Understanding projects - Billing in GCP - Install and configure Cloud SDK - Use Cloud Shell - APIs - Cloud Console Mobile App.

# List of Exercise/Experiments:

1. Install and configure cloud SDK.

2. Connect to computing resources hosted on Cloud via Cloud Shell.

# UNIT II COMPUTE AND STORAGE

6+6

6+6

6+6

Compute options in the cloud - Exploring IaaS with Compute Engine - Configuring elastic apps with autoscaling - Exploring PaaS - Event driven programs - Containerizing and orchestrating apps - Storage options in the cloud - Structured and unstructured storage in the cloud - Unstructured storage using Cloud Storage - SQL managed services - NoSQL managed services.

# List of Exercise/Experiments:

- 1. Create virtual machine instances of various machine types using the Cloud Console and the command line. Connect an NGINX web server to your virtual machine.
- 2. Create a small App Engine application that displays a short message.
- 3. Create, deploy, and test a cloud function using the Cloud Shell command line.
- 4. Deploy a containerized application.
- 5. Create a storage bucket, upload objects to it, create folders and subfolders in it, and make objects publicly accessible using the Cloud command line.

# UNIT III APIS AND SECURITY IN THE CLOUD

The purpose of APIs – API Services - Managed message services - Introduction to security in the cloud - The shared security model - Encryption options - Authentication and authorization with Cloud IAM - Identify Best Practices for Authorization using Cloud IAM.

# List of Exercise/Experiments:

- 1. Deploy a sample API with any of the API service.
- 2. Publish messages with managed message service using the Python client library.
- 3. Create two users. Assign a role to a second user and remove assigned roles associated with Cloud IAM. Explore how granting and revoking permissions works from Cloud Project Owner and Viewer roles.

### UNIT IV NETWORKING, AUTOMATION AND MANGAEMENT TOOLS 6+6

Introduction to networking in the cloud - Defining a Virtual Private Cloud - Public and private IP address basics - Cloud network architecture - Routes and firewall rules in the cloud - Multiple VPC networks - Building hybrid clouds using VPNs - Different options for load balancing - Introduction to Infrastructure as Code - Terraform - Monitoring and management tools.

# List of Exercise/Experiments:

- 1. Create several VPC networks and VM instances and test connectivity across networks.
- 2. Create two nginx web servers and control external HTTP access to the web servers using tagged firewall rules.
- 3. Configure a HTTP Load Balancer with global backends. Stress test the Load Balancer and denylist the stress test IP.
- 4. Create two managed instance groups in the same region. Then, configure and test an Internal Load Balancer with the instances groups as the backends.
- 5. Monitor a Compute Engine virtual machine (VM) instance with Cloud Monitoring by creating uptime check, alerting policy, dashboard and chart.

#### UNIT V

# **EV BIG DATA AND MACHINE LEARNING SERVICES**

Introduction to big data managed services in the cloud - Leverage big data operations - Build Extract, Transform, and Load pipelines - Enterprise Data Warehouse Services - Introduction to machine learning in the cloud - Building bespoke machine learning models with AI Platform - Pre-trained machine learning APIs.

# List of Exercise/Experiments: 1. Create a cluster, run a simple Apache Spark job in the cluster, then modify the number of workers in the cluster. 2. Create a streaming pipeline using one of the cloud service. 3. Set up your Python development environment, get the relevant SDK for Python, and run an example pipeline using the Cloud Console. 4. Use cloud-based data preparation tool to manipulate a dataset. Import datasets, correct mismatched data, transform data, and join data. 5. Utilize a cloud-based data processing and analysis tool for data exploration and use a machine learning platform to train and deploy a custom TensorFlow Regressor model for predicting customer lifetime value. **TOTAL: 60 PERIODS OUTCOMES:** At the end of this course, the students will be able to: **CO1**: Describe the different ways a user can interact with Cloud. **CO2**: Discover the different compute options in Cloud and implement a variety of structured and unstructured storage models. CO3: Discuss the different application managed service options in the cloud and outline how security in the cloud is administered in Cloud. CO4: Demonstrate how to build secure networks in the cloud and identify cloud automation and management tools. **CO5**: Discover a variety of managed big data services in the cloud. **CO6**: Use Cloud services to build applications. **REFERENCES:** 1. https://cloud.google.com/docs 2. https://www.cloudskillsboost.google/paths/36 3. https://nptel.ac.in/courses/106105223 4. Anthony J. Sequeira, "AWS Certified Cloud Practitioner (CLF-C01) Cert Guide", First Edition, Pearson Education, 2020. 5. AWS Documentation (amazon.com) 6. <u>AWS Skill</u> Builder 7. AWS Academy Cloud Foundations Course https://www.awsacademy.com/vforcesite/LMS_Login LIST OF EQUIPMENTS: GCP / CloudSkillBoost Platform/AWS Console /AWS Academy Learner Lab.

2205000		<b>C</b>
2203909	3 0 0	) 3
<b>OBJECTIVES:</b>		
The Course will en	nable learners to:	
• Explain the	fundamental concepts of virtualization	
Analyze the	role of hypervisors in hardware virtualization	
• Apply the u	nderstanding of CPU, memory (MMU), and I/O virtualization techniques	
<ul> <li>Assess secu</li> </ul>	rity considerations of virtualized environments	
<ul> <li>Discuss stra</li> </ul>	tegies for protecting VMs and data centers	
UNIT I	INTRODUCTION	9
Virtualization - Vir	tual Machines - Hypervisors - Type-1 and Type-2 Hypervisors - Multiplexi	ng and
Emulation - Approa	aches to Virtualization and Paravirtualization - Benefits of Using Virtual Ma	chines.
Working with Virtu	al Machines.	
UNIT II	HARDWARE VIRTUALIZATION	9

The Popek/Goldberg Theorem - Virtualization without Architectural Support: Full Virtualization - Paravirtualization - Designs Options for Type-1 Hypervisors. Hypervisors: Describing a Hypervisor - Role of Hypervisor - VMWare ESX - Citrix Hypervisor - Microsoft Hyper-V.

UNIT III	TYPES OF VIRTUALIZATIONS	10				
CPU Virtualization with VT-x: Design requirements - The VT-x Architecture - KVM. MML						
Virtualization: Extended Paging - Virtualizing Memory in KVM. I/O Virtualization: Benefits of I/O						
Interposition - Physical I/O - Virtual I/O Without Hardware Support- Virtual I/O with Hardware						
Support. Virtualization Support in ARM Processors.						
UNIT IV	VIRTUALIZATION SECURITY	9				
Fundamentals of	Fundamentals of Virtualization Security: Virtualization Architecture - Threats to a Virtualized					
Environment. Secu	uring Hypervisors: Hypervisor Configuration and Security. Designing V	<i>'irtual</i>				
Networks for Sec	urity: Comparing Virtual and Physical Networks - Virtual Network Se	curity				
Considerations - Co	onfiguring Virtual Switches for Security.					
UNIT V	VIRTUALIZATION AND AVAILABILITY	8				
Availability - Protecting a Virtual Machine - Protecting Multiple Virtual Machines - Protecting						
Datacenters - Deploying Applications in a Virtual Environment - Recent Trends in Virtualization.						
	TOTAL: 45 PER	IODS				
<b>OUTCOMES:</b>						
At the end of this of	course, the students will be able to:					
<b>CO1:</b> Understand the basics of virtualization and its benefits.						
CO2: Assess the significance of hypervisors in hardware virtualization, examining their roles and						
implications for system efficiency and performance						
CO3: Utilize knowledge of virtualization technologies to solve practical problems and implement						
effective solutions						
CO4: Analyze sec	urity threats and design secure virtual networks					
CO5: Discuss strategies to improve availability in virtual environment and for protecting VMs and						
data centers						
CO6: Use virtualization technology effectively to optimize system performance and resource usage in						
real-world sett	ings					
<b>TEXTBOOKS:</b>						
1. Edouard Bugnion, Jason Nieh, Dan Tsafrir, "Hardware and Software Support for Virtualization",						
Morgan & Claypool Publishers, 2017.						
2. Matthew Portnoy, "Virtualization Essentials", Third Edition, Sybex - John Wiley & Sons, 2023.						
REFERENCES:						
1. Dave Shackleford, "Virtualization Security: Protecting Virtualized Environments", Sybex - John						
Wiley & Sons, 2012.						
2. Nelson Ruest, I	Danielle Ruest, Virtualization, A beginners guide, 2009, McGrawHill.					
3. Nadeau, Tim Cerng, Je Buller, Chuck Enstall, Richard Ruiz, Mastering Microsoft Virtualization,						
Wiley Publicati	on, 2010.					
4 William Von H	agen Professional Xen Virtualization Wiley Publication 2008					

2205010	22CS910 DEVOPS	L	Т	Р	С	
220.5910		3	0	0	3	
OBJECTIVES:						
The Course will enable learners to:						
• Bridge the gap between development and operations for faster, more reliable software releases.						
• Automate software delivery with CI/CD pipelines.						
• Package and deploy apps efficiently using Docker containers.						
• Automate infrastructure with Infrastructure as Code (IaC).						

• Monitor and troubleshoot applications in production.
UNIT I	INTRODUCTION TO DEVOPS	9
Software Dev	elopment Methodologies - Operations Methodologies - Systems Methodologie	es -
Development,	Release, and Deployment Concepts - Infrastructure Concepts. What is DevOps? - Dev	Ops
importance and	benefits -DevOps principles and practices - 7 C's of DevOps lifecycle for business agil	ity -
DevOps and	continuous testing. How to choose right DevOps tools? - Challenges with Dev	Ops
implementation	1	
UNIT II	VERSION CONTROL WITH GIT	9
Introduction to	Git version control system - Git commands for basic operations (clone, commit, push,	oull)
- Branching an	d merging strategies - Collaboration using Git workflows.	
UNIT III	<b>CONTINUOUS INTEGRATION AND DELIVERY (CI/CD)</b>	9
Introduction to	CI/CD pipelines - Benefits of CI/CD for faster deployments - Setting up a CI/CD pipelines	eline
with Jenkins -	Automating builds, tests, and deployments.	
UNIT IV	CONTAINERIZATION WITH DOCKER	9
Introduction to	containerization and its benefits - Understanding Docker concepts: images, containers,	
registries - Bui	lding and managing Docker containers - Docker Compose for multi-container application	ons
- Introduction t	o container orchestration with Docker Swarm or Kubernetes.	
UNIT V	<b>INFRASTRUCTURE AS CODE (IAC) AND MONITORING</b>	9
Introduction to	Infrastructure as Code (IaC) - Benefits of using IaC for repeatable infrastructure provisio	ning
- Learning IaC	with Terraform - Setting up infrastructure configurations with Terraform - Introduction	on to
monitoring and	logging tools for applications - Alerting and troubleshooting techniques.	
	TOTAL: 45 PERIO	DDS
OUTCOMES		
At the end of t	his course, the students will be able to:	
CO1: Unders	stand the core principles and philosophies of DevOps.	
CO2: Impler	nent version control systems for code management and collaboration.	
CO3: Autom	ate software delivery pipelines using CI/CD tools.	
CO4: Utilize	containerization technologies for packaging and deploying applications.	
CO5: Config	ure infrastructure as code (IaC) for repeatable deployments.	
CO6: Monito	or and maintain applications in a production environment.	
TEXT BOOK		
1. Dee	S:	
	S: pak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile	у,
201	S: pak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile 9.	у,
201 2. Jeni	S: pak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile 9. nifer Davis, Ryn Daniels, "Effective DevOps", O'Reilly Media, 2016.	у,
201 2. Jenn REFERENCE	S: pak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile 9. nifer Davis, Ryn Daniels, "Effective DevOps", O'Reilly Media, 2016. S:	у,
201 2. Jenn REFERENCE 1. Gene K	S: pak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile 9. nifer Davis, Ryn Daniels, "Effective DevOps", O'Reilly Media, 2016. S: im, Jez Humble, Patrick Debois, "The DevOps Handbook: How to Create World-C	y, Class
201 2. Jenn REFERENCE 1. Gene K Agility,	<ul> <li>S: pak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile 9. nifer Davis, Ryn Daniels, "Effective DevOps", O'Reilly Media, 2016.</li> <li>S: im, Jez Humble, Patrick Debois, "The DevOps Handbook: How to Create World-C Reliability, and Security in Technology Organizations", IT Revolution Press, 2016.</li> </ul>	y, Class
201 2. Jen REFERENCE 1. Gene K Agility, 2. Jez Hun	<ul> <li>S: pak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile 9. nifer Davis, Ryn Daniels, "Effective DevOps", O'Reilly Media, 2016.</li> <li>S: im, Jez Humble, Patrick Debois, "The DevOps Handbook: How to Create World-O Reliability, and Security in Technology Organizations", IT Revolution Press, 2016. nble, Gene Kim, "Continuous Delivery: Reliable Software Releases Through Build, Technology Organizations", IT Revolution Press, 2016.</li> </ul>	y, Class Fest,
201 2. Jenn REFERENCE 1. Gene K Agility, 2. Jez Hun and Dep	<ul> <li>S: pak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile 9. nifer Davis, Ryn Daniels, "Effective DevOps", O'Reilly Media, 2016.</li> <li>S: Tim, Jez Humble, Patrick Debois, "The DevOps Handbook: How to Create World-O Reliability, and Security in Technology Organizations", IT Revolution Press, 2016. nble, Gene Kim, "Continuous Delivery: Reliable Software Releases Through Build, T ployment Automation", Addison-Wesley, 2010.</li> </ul>	y, Class Fest,
201 2. Jenn REFERENCE 1. Gene K Agility, 2. Jez Hun and Dep 3. Yevgen	<ul> <li>S: pak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile 9. nifer Davis, Ryn Daniels, "Effective DevOps", O'Reilly Media, 2016.</li> <li>S: Tim, Jez Humble, Patrick Debois, "The DevOps Handbook: How to Create World-O Reliability, and Security in Technology Organizations", IT Revolution Press, 2016.</li> <li>nble, Gene Kim, "Continuous Delivery: Reliable Software Releases Through Build, Tooloyment Automation", Addison-Wesley, 2010.</li> <li>iy Brikman, "Terraform: Up &amp; Running: Writing Infrastructure as Code", O'Reilly Media</li> </ul>	y, Class Fest, edia,
201 2. Jen REFERENCE 1. Gene K Agility, 2. Jez Hun and De 3. Yevgen 2019.	S: pak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile 9. nifer Davis, Ryn Daniels, "Effective DevOps", O'Reilly Media, 2016. S: Cim, Jez Humble, Patrick Debois, "The DevOps Handbook: How to Create World-O Reliability, and Security in Technology Organizations", IT Revolution Press, 2016. nble, Gene Kim, "Continuous Delivery: Reliable Software Releases Through Build, To oloyment Automation", Addison-Wesley, 2010. iy Brikman, "Terraform: Up & Running: Writing Infrastructure as Code", O'Reilly Media	y, Llass Fest, edia,

#### DATA ENGINEERING IN CLOUD

 L
 T
 P
 C

 3
 0
 0
 3

**OBJECTIVES:** 

#### The Course will enable learners to:

- $\checkmark$  Grasp the fundamentals of data engineering, emphasizing cloud-based data access.
- ✓ Construct robust and secure data pipelines using Cloud services.
- ✓ Select and implement appropriate data storage solutions while prioritizing pipeline security.

Utilize cloud tools for handling extensive data for machine learning purposes.  $\checkmark$  $\checkmark$  Efficiently analyze, visualize, and automate data pipelines to streamline operations. 8 UNIT I **INTRODUCTION** Introduction to data Engineering - The Data Engineering Life Cycle - Data Engineering and Data Science - Data-Driven Organizations: Data-driven decisions - The data pipeline - The role of the data engineer in data-driven organizations - Modern data strategies - The Elements of Data: The five Vs of data - volume, velocity, variety, veracity, and value. Demo: Accessing and Analyzing Data by Using Amazon S3. **UNIT II** SECURE AND SCALABLE DATA PIPELINES 10 The evolution of data architectures - Modern data architecture on AWS - Modern data architecture pipeline: Ingestion and storage - Processing and consumption - Streaming analytics pipeline - Security of analytics workloads - Scaling - Creating a scalable infrastructure and components. ETL and ELT comparison - Data wrangling. STORING AND ORGANIZING DATA **UNIT III** 9 Comparing batch and stream ingestion - Batch ingestion processing - Purpose-built ingestion tools - AWS Glue for batch ingestion processing - Kinesis for stream processing - Scaling considerations for batch processing and stream processing - Storage in the modern data architecture - Data lake storage - Data warehouse storage - Purpose-built databases - Storage in support of the pipeline - Securing storage. **UNIT IV** PROCESSING BIG DATA AND DATA FOR ML 10 Big data processing concepts - Apache Hadoop - Apache Spark - Amazon EMR - Managing your Amazon EMR clusters - Apache Hudi - The ML lifecycle - Collecting data - Applying labels to training data with known targets - Preprocessing data - Feature engineering - Developing a model - Deploying a model - ML infrastructure on AWS - SageMaker - Amazon CodeWhisperer - AI/ML services on AWS. UNIT V DATA ANALYSIS AND VISUALIZATION 8 Analyzing and Visualizing Data: Considering factors that influence tool selection - Comparing AWS tools and services - Selecting tools for a gaming analytics use case. Automating the Pipeline: Automating infrastructure deployment - CI/CD - Automating with Step Functions. **TOTAL: 45 PERIODS OUTCOMES:** At the end of this course, the students will be able to: **CO1:** Understand data engineering, pipelines & access data in the cloud. **CO2:** Build secure & scalable data pipelines using AWS services. **CO3:** Choose the right data storage & secure your data pipelines. **CO4:** Process big data for machine learning with cloud tools. **CO5:** Analyze & visualize data and automate data pipelines. **CO6:** Apply best practices in data governance, compliance, and ethics throughout the data engineering process, ensuring responsible handling and usage of data. **TEXT BOOKS:** 1. Martin Kleppman, "Data Engineering: Building Reliable Scalable Data Systems", O'Reilly Media, 2017. 2. Wes McKinney, "Python for Data Analysis", 2nd Edition, O'Reilly Media, 2017. **REFERENCES:** 1. Martin Kleppman, "Designing Data-Intensive Applications", O'Reilly Media, 2017. 2. AWS Documentation (amazon.com) 3. AWS Skill Builder 4. AWS Academy Data Engineering Course - https://www.awsacademy.com/vforcesite/LMS Login

22CS933	MACHINE LEARNING FOR NLP IN CLOUD	L	Τ	Р	С
		3	0	0	3
OBJECTIVES: The Course will	l anabla laarnars ta:				
• Illustrate	how to apply the ML pipeline to NLP				
<ul> <li>Inustrate</li> <li>Impleme</li> </ul>	now to apply the ML pipeline to NLI.				
Build a s	olution that uses AWS services to transcribe and translate text from mul	time	lia		
Build a s	olution using a combination of algorithms and Amazon Machine Learning	ng (A	maz	on N	/IL)
services.		-8 (		011 1	
• Identify	use cases to use generative AI and LLMs.				
• Use LLN	Is with AWS generative AI services.				
UNIT I	Introduction to NLP				8
NLP – Business	Problems Solved by NLP – NLP Roles - NLP and ML – Common NLP	tasks	5 – A	Apply	y
ML to NLP prob	elem - Evolution of NLP architectures.				
UNIT II	Processing Text for NLP				10
Text processing	overview - Getting text - Extracting Text from Webpages and Images - T	ſext p	orepr	oces	sing
- Vectorizing te	xt - Encoding and Vectorizing Text - Advanced processing - Storin	ig an	d vis	suali	zing
unstructured dat	a – Implement Sentiment Analysis - Identifying the steps for text proce	ssing	- Ex	ami	nıng
	Information Extraction				0
Information extr	action overview Types of information extraction - Implementing inform	natio	1 ovt	racti	<u> </u>
Working with E	ntities - Topic Modeling - Identifying the approach - Implementing Top	nation	lodel	ing '	with
Amazon Compre	chend. Neural Topic Model (NTM).				
UNIT IV	Translating Languages				9
Working with la	nguage issues - Detecting and translating languages - Transcribing and v	vocali	zing	text	
with AWS servi	ces - Implementing a Multilingual Solution.				
UNIT V	Generative AI				9
Generative AI -	Amazon Bedrock Overview - Introducing foundations models and large	langu	lage	mod	els -
to Dorform NLD	nitecture - LLMs configuration parameters - Introducing prompt engine	ering	- Us	se LI	LMS
	Tasks - Adapting LLWs - Application Integration.	1.1	5 PI	7 <b>RI</b> (	פתר
OUTCOMES		1L'. 7	511		500
At the end of th	is course. the students will be able to:				
CO1: Apply th	ne ML pipeline to NLP.				
CO2: Impleme	ent text extraction to obtain data from webpages.				
<b>CO3:</b> Build a	solution that uses AWS services to transcribe and translate text from mu	ltime	dia.		
<b>CO4</b> : Build a	solution using a combination of algorithms and Amazon Machine Learn	ing (/	Ama	zon I	ML)
services.					
COS: Identify	Use cases to use generative AI and LLMs.				
TEXT BOOKS	•				
1. Mona M.	Premkumar Rangarajan, Natural Language Processing with AWS AI Ser	vices	s. Pa	ckt	
Publicatio	ns, 2021.		,		
REFERENCES	:				
1. Saket S F	R Mengle, Maximo Gurmendez, Mastering Machine Learning on AWS: A	Advar	nced	mac	hine
learning	in Python using SageMaker, Apache Spark, and TensorFlow, Packt Pub	licatio	ons, i	2019	<i>י</i> .
$\begin{bmatrix} 2. & AWS D \\ 2 & AWS S \end{bmatrix}$	cumentation (amazon.com)				
$\begin{array}{c c} \mathbf{S} & \mathbf{A} \mathbf{W} \mathbf{S} \mathbf{S} \mathbf{K} \\ \mathbf{\Delta} & \mathbf{A} \mathbf{W} \mathbf{S} \end{array}$	III DUILUCT Academy Machine Learning for Natural Language Process	sina	C	niree	<b>.</b> _
https://w	ww.awsacademy.com/vforcesite/LMS_Login	JIIE	C	/u15C	, –

22CS934       CLOUD SERVICES MANAGEMENT       Image of the service of the ser			Τ	Т	Р	C
OBJECTIVES:       Image: Second Service Management terminology, definition & concepts         ✓ Introduce Cloud Service Management terminology, definition & concepts         ✓ Compare and contrast cloud service management with traditional IT service management         ✓ Identify strategies to reduce risk and eliminate issues associated with adoption of cloud services in a business environment         ✓ Illustrate the benefits and drive the adoption of cloud-based services to solve real world problems         UNIT I       CLOUD SERVICE MANAGEMENT FUNDAMENTALS         Ø       Cloud Ecosystem, The Essential Characteristics, Basics of Information Technology Service Management and Cloud Service Management, Service Perspectives, Cloud Service Models, Cloud Service Deployment Models.         UNIT II       CLOUD SERVICE STRATEGY       9         Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, Cloud Service Architecture.       9         UNIT II       CLOUD SERVICE MANAGEMENT       9         Cloud Service Reference Model, Cloud Service Cloud Service Coperations Management.       9         VINT IV       CLOUD SERVICE ECONOMICS       9         Pricing models for Cloud Services, Capex vs Opex Shift, Cloud Service Charging, Cloud Cost Models.       9         UNIT IV       CLOUD SERVICE GOVERNANCE & VALUE       9         Tricing models for Cloud Governance Definition, Cloud Govereance Framework, Cloud Governance Argeing, Procurement of Cloud S	22CS934	CLOUD SERVICES MANAGEMENT	3	0	1	3
OutPut Discover       9            Introduce Cloud Service Management terminology, definition & concepts <ul> <li>Compare and contrast cloud service management with traditional IT service management</li> <li>Identify strategies to reduce risk and eliminate issues associated with adoption of cloud-based services in a business environment</li> <li>Illustrate the benefits and drive the adoption of cloud-based services to solve real world problems</li> <li>UNIT I</li> <li>CLOUD SERVICE MANAGEMENT FUNDAMENTALS</li> <li>9</li> </ul> Cloud Ecosystem, The Essential Characteristics, Basics of Information Technology Service Management and Cloud Service Management, Service Perspectives, Cloud Service Models, Cloud Service Deployment Models.         9           Cloud Strategy Pundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture.         9           UNIT II         CLOUD SERVICE MANAGEMENT         9           Cloud Service Reference Model, Cloud Service Infectycle, Basics of Cloud Service Design, Dealing with Legacy Systems and Services, Benchmarking of Cloud Services, Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management.           UNIT IV         CLOUD SERVICE ECONOMICS         9           Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud Services, Qapex vs Opex Shift, Clo	OBIECTIVES		5	U	U	3
<ul> <li>Introduce Cloud Service Management terminology, definition &amp; concepts</li> <li>Compare and contrast cloud service management with traditional T service management</li> <li>Identify strategies to reduce risk and eliminate issues associated with adoption of cloud services</li> <li>Select appropriate structures for designing, deploying and running cloud-based services in a business environment</li> <li>Illustrate the benefits and drive the adoption of cloud-based services to solve real world problems</li> <li>UNIT I</li> <li>CLOUD SERVICE MANAGEMENT FUNDAMENTALS</li> <li>Cloud Ecosystem, The Essential Characteristics, Basics of Information Technology Service Management and Cloud Service Management, Service Perspectives, Cloud Service Models, Cloud Service Management, Service Perspectives, Cloud Service Models, Cloud Service Management, Models.</li> <li>UNIT II</li> <li>CLOUD SERVICE STRATEGY</li> <li>Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, Cloud Service LifeCycle, Basics of Cloud Service Design, Dealing with Legacy Systems and Services, Benchmarking of Cloud Service, Cloud Service Capacity Planning, Cloud Service Deloyment and Migration, Cloud Marketplace, Cloud Service Operations Management.</li> <li>UNIT IV</li> <li>CLOUD SERVICE GOVERNANCE &amp; VALUE</li> <li>Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Cloud Services, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Reservices, Capex vs Opex Shift, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Service Model Risk Matrix, Understanding Value of Cloud Services</li></ul>	The Course will ena	ble learners to:				
<ul> <li>Compare and contrast cloud service management with traditional IT service management</li> <li>Identify strategies to reduce risk and eliminate issues associated with adoption of cloud-based services</li> <li>Select appropriate structures for designing, deploying and running cloud-based services in a business environment</li> <li>Illustrate the benefits and drive the adoption of cloud-based services to solve real world problems</li> <li>UNTI I CLOUD SERVICE MANAGEMENT FUNDAMENTALS 9</li> <li>Cloud Ecosystem, The Essential Characteristics, Basics of Information Technology Service Management and Cloud Service Management, Service Perspectives, Cloud Service Models, Cloud Service Deployment and Models.</li> <li>UNTI II CLOUD SERVICE STRATEGY 9</li> <li>Cloud Strategy Fundamentals, Cloud Service Architecture.</li> <li>UNT III CLOUD SERVICE MANAGEMENT 9</li> <li>Cloud Service, Reference Model, Cloud Service Architecture.</li> <li>UNTI II CLOUD SERVICE MANAGEMENT 9</li> <li>Cloud Service, Benchmarking of Cloud Service, Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management.</li> <li>UNTI V CLOUD SERVICE ECONOMICS 9</li> <li>Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-Services, Capacy vs Opex Shift, Cloud Service Charging, Cloud Cost Models.</li> <li>UNTI V CLOUD SERVICE GOVERNANCE &amp; VALUE 9</li> <li>UTT V CLOUD SERVICE GOVERNANCE &amp; VALUE 9</li> <li>UTT V CLOUD SERVICE GOVERNANCE &amp; VALUE 9</li> <li>UTT V CLOUD SERVICE GOVERNANCE and excitement towards adoption of cloud-based services.</li> <li>Matestanding Value of Cloud Services, Measuring the value of Cloud Service, Balanced Scorecard, Total Cost of Ownership.</li> <li>TOTAL: 45 PERIODS</li> <li>OUTCOMES:</li> <li>At the end of this course, the students will be able to:</li> <li>CO1: Exhibit cloud-design skills t</li></ul>	✓ Introduce Cle	oud Service Management terminology, definition & concepts				
<ul> <li>Identify strategies to reduce risk and eliminate issues associated with adoption of cloud services</li> <li>Select appropriate structures for designing, deploying and running cloud-based services in a business environment</li> <li>Illustrate the benefits and drive the adoption of cloud-based services to solve real world problems</li> <li>UNIT I</li> <li>CLOUD SERVICE MANAGEMENT FUNDAMENTALS</li> <li>Cloud Ecosystem, The Essential Characteristics, Baisci of Information Technology Service Management and Cloud Service Management, Service Perspectives, Cloud Service Models, Cloud Service Deployment Models.</li> <li>UNIT II</li> <li>CLOUD SERVICES STRATEGY</li> <li>Cloud Strategy Fundamentals. Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, Cloud Service Change Management, Cloud Service Change Management, Cloud Service Cloud Service Design, Dealing with Legacy Systems and Services, Benchmarking of Cloud Service Operations Management.</li> <li>UNIT II</li> <li>CLOUD SERVICE ECONOMICS</li> <li>P</li> <li>Orloud Service, Deschmarking of Cloud Service, Senchmarking of Cloud Service, Senchmarking or Cloud Service, Senchmarking or Cloud Service, Senchmarking or Cloud Service, Senchmarking or Cloud Service, Cloud Service, Cloud Service, Senchmarking or Cloud Service, Sencharking Sence Management, Cloud Gevernance Structure, Cloud Go</li></ul>	✓ Compare and	contrast cloud service management with traditional IT service man	nage	men	t	
<ul> <li>Select appropriate structures for designing, deploying and running cloud-based services in a business environment</li> <li>Illustrate the benefits and drive the adoption of cloud-based services to solve real world problems</li> <li>UNIT I</li> <li>CLOUD SERVICE MANAGEMENT FUNDAMENTALS</li> <li>9</li> <li>Cloud Ecosystem, The Essential Characteristics, Basics of Information Technology Service Management, and Cloud Service Management, Service Perspectives, Cloud Service Models, Cloud Service Deployment Models.</li> <li>UNIT II</li> <li>CLOUD SERVICES STRATEGY</li> <li>9</li> <li>Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture.</li> <li>UNIT III</li> <li>CLOUD SERVICE MANAGEMENT</li> <li>9</li> <li>Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Design, Dealing with Legacy Systems and Services, Benchmarking of Cloud Service, Cloud Service Capacity Planning, Cloud Service Service Operations Management.</li> <li>UNIT IV</li> <li>CLOUD SERVICE ECONOMICS</li> <li>9</li> <li>Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capacx vs Opex Shift, Cloud service Charging, Cloud Cost Models.</li> <li>UNIT V</li> <li>CLOUD SERVICE GOVERNANCE &amp; VALUE</li> <li>9</li> <li>Pricing models for Cloud Services, Measuring the value of Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Service, Balanced Scorecard, Total Cost Models.</li> <li>UNIT V</li> <li>CLOUD SERVICE GOVERNANCE &amp; VALUE</li> <li>9</li> <li>OUTCOMES:</li> <li>At the end of this course, the students will be able to:</li> <li>CO2: Possess Strong theoretical foundation leading to ex</li></ul>	✓ Identify strat	egies to reduce risk and eliminate issues associated with adoption	of clo	oud	serv	vices
business environment       Control         Illustrate the benefits and drive the adoption of cloud-based services to solve real world problems         UNTT I       CLOUD SERVICE MANAGEMENT FUNDAMENTALS       9         Cloud Ecosystem, The Essential Characteristics, Basics of Information Technology Service Management and Cloud Service Management, Service Perspectives, Cloud Service Models, Cloud Service Deployment Models.       9         UNIT II       CLOUD SERVICES STRATEGY       9         Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, TC Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture.       9         Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Design, Dealing with Legacy Systems and Services, Benchmarking of Cloud Service, Cloud Service Operations Management.       9         Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud Service Charging, Cloud Cost Models.       9         IVIT IV       CLOUD SERVICE GOVERNANCE & VALUE       9         Pricing models for Cloud Governance Definition, Cloud Governance Framework, Cloud Service, Balanced Scorecard, Total Cost Models.       9         IVIT V       CLOUD SERVICE GOVERNANCE & VALUE       9         Pricing models for Cloud Governance Considerations, Cloud Service Ramework, Cloud Governance Structure, Cloud Governance Cloud Services,	✓ Select approp	priate structures for designing, deploying and running cloud-b	ased	ser	vice	s in a
✓ Illustrate the benefits and drive the adoption of cloud-based services to solve real world problems.         UNT I       CLOUD SERVICE MANAGEMENT FUNDAMENTALS       9         Cloud Ecosystem, The Essential Characteristics, Basics of Information Technology Service Management Models.       9         UNIT II       CLOUD SERVICES STRATEGY       9         Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture.       9         Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Design, Dealing with Legacy Systems and Services, Benchmarking of Cloud Services, Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management.       9         UNIT IV       CLOUD SERVICE ECONOMICS       9         Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud Service Charging, Cloud Cost Models.       9         UNIT V       CLOUD SERVICE GOVERNANCE & VALUE       9         IT Governance Definition, Cloud Governance Definition, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership.       TOTAL: 45 PERIODS         OUTCOMES:       Colud Services on the cloud and set up a cloud services to address diverse business challenges effectivel	business envi	ronment				
UNIT I         CLOUD SERVICE MANAGEMENT FUNDAMENTALS         9           Cloud Ecosystem, The Essential Characteristics, Basics of Information Technology Service Management and Cloud Service Management, Service Perspectives, Cloud Service Models, Cloud Service Deployment Models.         9           UNIT II         CLOUD SERVICES STRATEGY         9           Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture.         9           UNIT III         CLOUD SERVICE MANAGEMENT         9           Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management.         9           VINT IV         CLOUD SERVICE ECONOMICS         9           Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud Service Charging, Cloud Cost Models.         9           IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Nucleus, Build and automate business solutions using cloud technologies.         CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services           CO1: Explain security challenges in the cloud and set up a cloud environment CO3: S	✓ Illustrate the l	benefits and drive the adoption of cloud-based services to solve rea	ıl wo	orld	prob	olems
Cloud Ecosystem, The Essential Characteristics, Basics of Information Technology Service Management and Cloud Service Management, Service Perspectives, Cloud Service Models, Cloud Service Deployment Models.         UNIT II       CLOUD SERVICES STRATEGY       9         Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IC apacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture.       9         UNIT III       CLOUD SERVICE MANAGEMENT       9         Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management.       9         Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models.       9         IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Services, Balanced Scorecard, Total Cost of Ownership.       9         OUTCOMES:       TOTAL: 45 PERIODS         At the end of this course, the students will be able to:       CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.         CO3: Solve the real world problems using Cloud services and technologies       CO3: Solve the real world problems using Cloud services and technologies         CO3: Solve the real world problems using cloud technologies and services	UNIT I	CLOUD SERVICE MANAGEMENT FUNDAMENTALS				9
and Cloud Šervice Management, Service Perspectives, Cloud Service Models, Cloud Service Deployment Models.           UNIT II         CLOUD SERVICES STRATEGY         9           Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture.         9           Cloud Strategy Fundamentals, Cloud Service Architecture.         9           Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Deployment Migration, Cloud Marketplace, Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management.           UNIT IV         CLOUD SERVICE GOVENANCE & VALUE         9           Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud Governance Definition, Cloud Governance Carging, Cloud Cost Models.         9           IT Governance Definition, Cloud Governance Definition, Cloud Services, Balanced Scorecard, Total Cost of Ownership.         9           IT Governance Cloud-Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership.         10           OUTCOMES: At the end of this course, the students will be able to: CO3: Solve the real world problems using Cloud services and technologies CO3: Solve the real world problems using Cloud services and technologies CO4: Develop and deploy services on the cloud and set up a cloud environment CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business	Cloud Ecosystem, Th	he Essential Characteristics, Basics of Information Technology Se	rvic	e M	anag	gement
Models.       9         UNIT II       CLOUD SERVICES STRATEGY       9         Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IC Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture.       9         UNIT III       CLOUD SERVICE MANAGEMENT       9         Cloud Service Reference Model, Cloud Service, LifeCycle, Basics of Cloud Service Design, Dealing with Legacy Systems and Services, Benchmarking of Cloud Service, Cloud Service Operations Management.       9         UNIT IV       CLOUD SERVICE ECONOMICS       9         Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models.       9         IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership.       TOTAL: 45 PERIODS         OUTCOMES:       At the end of this course, the students will be able to:       CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services       Governance       Governance         CO3: Solve the real world problems using Cloud services and technologies       CO3: Solve the real world problems using Cloud services and technologies       CO3: S	and Cloud Service M	lanagement, Service Perspectives, Cloud Service Models, Cloud S	ervic	e D	eplo	yment
UNIT II       CLOUD SERVICES STRATEGY       9         Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for       Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand         Queueing, Change Management, Cloud Service Architecture.       9         UNIT III       CLOUD SERVICE MANAGEMENT       9         Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management.       9         UNIT IV       CLOUD SERVICE ECONOMICS       9         Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models.       9         IVIT V       CLOUD SERVICE GOVERNANCE & VALUE       9         IT Governance Definition, Cloud Governance Definition, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Service Model Risk Matrix, Understanding Value of Cloud Services on the cloud and set up a cloud environment CO2: Posses Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services       CO2: Posses Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services         OUTCOMES:       CLOUD SERVICE Matrix Support Supportices and technologies       CO2: Posses St	Models.				1	5
Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture. <b>UNIT III CLOUD SERVICE MANAGEMENT 9</b> Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management. <b>9</b> Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models. <b>9</b> IVIT V <b>CLOUD SERVICE GOVERNANCE &amp; VALUE 9</b> IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Service, Balanced Scorecard, Total Cost of Ownership. <b>9</b> OUTCOMES:       TOTAL: 45 PERIODS         OUTCOMES:       CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services on the cloud and services and technologies         CO4: Develop and deploy services on the cloud and services and technologies       CO4: Develop and deploy services on the cloud and services and services to address diverse business challenges effectively. <b>TEXT BOOKS:</b> 1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Erar, Ereal Publications, 2023.         1. Thomas Erl,	UNIT II	CLOUD SERVICES STRATEGY				9
Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture.       9         UNIT III       CLOUD SERVICE MANAGEMENT       9         Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Deplayment and Migration, Cloud Marketplace, Cloud Service Operations Management.       9         UNIT IV       CLOUD SERVICE ECONOMICS       9         Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models.       9         UNIT V       CLOUD SERVICE GOVERNANCE & VALUE       9         T Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership.       9         OUTCOMES:       TOTAL: 45 PERIODS         OUTCOMES:       TOTAL: 45 PERIODS         CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services on the cloud and set up a cloud environment         CO5: Explain security challenges in the cloud environment       CO5: Explain security challenges in the cloud environment         CO5: Explain security challenges in the cloud environment       CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse	Cloud Strategy Fund	lamentals, Cloud Strategy Management Framework, Cloud Polic	cv. k	Kev	Driv	ver for
Queueing, Change Management, Cloud Service Architecture.       9         UNIT III       CLOUD SERVICE MANAGEMENT       9         Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Design, Dealing with Legacy Systems and Services, Benchmarking of Cloud Services, Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management.       9         UNIT IV       CLOUD SERVICE ECONOMICS       9         Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models.       9         UNIT V       CLOUD SERVICE GOVERNANCE & VALUE       9         IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership.       9         OUTCOMES:       At the end of this course, the students will be able to:       CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services       CO3: Solve the real world problems using Cloud services and technologies         CO4: Develop and deploy services on the cloud and set up a cloud environment       CO5: Explain security challenges in the cloud environment         CO5: Explain security challenges in the cloud environment       CO3: Solve the real world problems using Cloud services sand services to address diverse business challenges effectively.	Adoption, Risk Mar	nagement, IT Capacity and Utilization, Demand and Capacity 1	nate	hing	, D	emand
UNIT III       CLOUD SERVICE MANAGEMENT       9         Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Design, Dealing with Legacy Systems and Services, Benchmarking of Cloud Service, Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management.       9         VINIT IV       CLOUD SERVICE ECONOMICS       9         Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models.       9         UNIT IV       CLOUD SERVICE GOVERNANCE & VALUE       9         IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Services, Balanced Scorecard, Total Cost of Ownership.       9         OUTCOMES:       TOTAL: 45 PERIODS         At the end of this course, the students will be able to:       CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services on the cloud and set up a cloud environment         CO3: Solve the real world problems using Cloud services and technologies       CO4: Develop and deploy services on the cloud and set up a cloud environment         CO5: Explain security challenges in the cloud environment       CO5: Explain security challenges in the cloud environment         CO5: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively. </td <td>Queueing, Change M</td> <td>lanagement, Cloud Service Architecture.</td> <td></td> <th>Ľ</th> <th>,,</th> <td></td>	Queueing, Change M	lanagement, Cloud Service Architecture.		Ľ	,,	
Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Design, Dealing with Legacy Systems and Services, Benchmarking of Cloud Services, Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management. UNIT IV CLOUD SERVICE ECONOMICS 9 Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models. UNIT V CLOUD SERVICE GOVERNANCE & VALUE 9 IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership. TOTAL: 45 PERIODS OUTCOMES: At the end of this course, the students will be able to: CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies. CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services on the cloud and set up a cloud environment CO5: Explain security challenges in the cloud environment CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively. TEXT BOOKS: 1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023. 1. Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology & Architecture", Prentice Hall, 2013. REFERENCES: 1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall, 1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,	UNIT III	CLOUD SERVICE MANAGEMENT				9
Legacy Systems and Services, Benchmarking of Cloud Services, Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management. UNIT IV CLOUD SERVICE ECONOMICS 9 Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models. UNIT V CLOUD SERVICE GOVERNANCE & VALUE 9 IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Services, Balanced Scorecard, Total Cost of Ownership. 7000000000000000000000000000000000000	Cloud Service Refere	ence Model, Cloud Service LifeCycle, Basics of Cloud Service De	esign	. De	alin	g with
Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management.       9         VINT IV       CLOUD SERVICE ECONOMICS       9         Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models.       9         UNIT V       CLOUD SERVICE GOVERNANCE & VALUE       9         IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Services Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership.       9         OUTCOMES:       TOTAL: 45 PERIODS         OUTCOMES:       TOTAL: 45 PERIODS         C01: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.         C02: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services on the cloud and set up a cloud environment         C05: Explain security challenges in the cloud environment       CO6: Explain security challenges in the cloud environment         C04: Develop and deploy services Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.       1. Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology & Architecture", Prentice Hall, 2013.         REFERENCES:       1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns"	Legacy Systems and	Services, Benchmarking of Cloud Services, Cloud Service Capaci	ty Pl	ann	ing.	Cloud
UNIT IV       CLOUD SERVICE ECONOMICS       9         Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models.       9         UNIT V       CLOUD SERVICE GOVERNANCE & VALUE       9         IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Services, Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership.       TOTAL: 45 PERIODS         OUTCOMES:       At the end of this course, the students will be able to:       CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services         CO3: Solve the real world problems using Cloud services and technologies       CO4: Develop and deploy services on the cloud and set up a cloud environment         CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.       TEXT BOOKS:         1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.       Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology & Architecture", Prentice Hall, 2013.         REFERENCES:       1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall, 2013.	Service Deployment	and Migration, Cloud Marketplace, Cloud Service Operations Mar	nagei	men	t.	
Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based         Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost         Models.         UNIT V       CLOUD SERVICE GOVERNANCE & VALUE       9         TT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud       Governance Structure, Cloud Governance Considerations, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership.         TOTAL: 45 PERIODS         OUTCOMES:         At the end of this course, the students will be able to:         CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.         CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services         CO3: Solve the real world problems using Cloud services and technologies         CO4: Develop and deploy services on the cloud and set up a cloud environment         CO5: Explain security challenges in the cloud environment         CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.         TEXT BOOKS:         1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.	UNIT IV	CLOUD SERVICE ECONOMICS	0			9
Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models.       9         UNIT V       CLOUD SERVICE GOVERNANCE & VALUE       9         IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership.       TOTAL: 45 PERIODS         OUTCOMES:       At the end of this course, the students will be able to:       TOTAL: 45 PERIODS         OUTCOMES:       At the end of this course, the students will be able to:       CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.         CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services       CO3: Solve the real world problems using Cloud services and technologies         CO4: Develop and deploy services on the cloud and set up a cloud environment       CO5: Explain security challenges in the cloud environment         CO5: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.       TEXT BOOKS:         1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.       Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.         1. Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &	Pricing models for (	Cloud Services, Freemium, Pay Per Reservation, Pay per User,	Subs	crip	tion	based
Models.       9         UNIT V       CLOUD SERVICE GOVERNANCE & VALUE       9         IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership.       TOTAL: 45 PERIODS         OUTCOMES:       TOTAL: 45 PERIODS         At the end of this course, the students will be able to:       CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.         CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services       CO3: Solve the real world problems using Cloud services and technologies         CO4: Develop and deploy services on the cloud and set up a cloud environment       CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.         TEXT BOOKS:       1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.         1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.         1. Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology & Architecture", Prentice Hall, 2013.         REFERENCES:         1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,	Charging, Procureme	ent of Cloud-based Services, Capex vs Opex Shift, Cloud service Ch	argi	ng, (	Clou	ld Cost
UNIT V       CLOUD SERVICE GOVERNANCE & VALUE       9         IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership.       TOTAL: 45 PERIODS         OUTCOMES:       TOTAL: 45 PERIODS         At the end of this course, the students will be able to:       TOTAL: 45 PERIODS         CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.       CO2:         CO3: Solve the real world problems using Cloud services and technologies       CO4: Develop and deploy services on the cloud and set up a cloud environment         CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.       TEXT BOOKS:         1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.       1. Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology & Architecture", Prentice Hall, 2013.         REFERENCES:       1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,	Models.		U	0,		
IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership. TOTAL: 45 PERIODS OUTCOMES: At the end of this course, the students will be able to: CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies. CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services CO3: Solve the real world problems using Cloud services and technologies CO4: Develop and deploy services on the cloud and set up a cloud environment CO5: Explain security challenges in the cloud environment CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively. TEXT BOOKS: 1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023. 1. Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology & Architecture", Prentice Hall, 2013. <b>REFERENCES:</b> 1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,	UNIT V	CLOUD SERVICE GOVERNANCE & VALUE				9
Governance Structure, Cloud Governance Considerations, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership. TOTAL: 45 PERIODS OUTCOMES: At the end of this course, the students will be able to: C01: Exhibit cloud-design skills to build and automate business solutions using cloud technologies. C02: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services C03: Solve the real world problems using Cloud services and technologies C04: Develop and deploy services on the cloud and set up a cloud environment C05: Explain security challenges in the cloud environment C06: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively. TEXT BOOKS: 1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023. 1. Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology & Architecture", Prentice Hall, 2013. REFERENCES: 1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,	IT Governance Det	finition, Cloud Governance Definition, Cloud Governance F	Fram	ewo	rk,	Cloud
Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership. TOTAL: 45 PERIODS OUTCOMES: At the end of this course, the students will be able to: CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies. CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services CO3: Solve the real world problems using Cloud services and technologies CO4: Develop and deploy services on the cloud and set up a cloud environment CO5: Explain security challenges in the cloud environment CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively. TEXT BOOKS: 1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023. 1. Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology & Architecture", Prentice Hall, 2013. REFERENCES: 1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,	Governance Structu	re, Cloud Governance Considerations, Cloud Service Mo	del	Ris	k N	Matrix,
Cost of Ownership.       TOTAL: 45 PERIODS         OUTCOMES:       At the end of this course, the students will be able to:         CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.       CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services         CO3: Solve the real world problems using Cloud services and technologies       CO4: Develop and deploy services on the cloud and set up a cloud environment         CO5: Explain security challenges in the cloud environment       CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.         TEXT BOOKS:       1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.         1. Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology & Architecture", Prentice Hall, 2013. <b>REFERENCES:</b> 1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,	Understanding Value	of Cloud Services, Measuring the value of Cloud Services, Balance	ed So	core	card	, Total
TOTAL: 45 PERIODS         OUTCOMES:         At the end of this course, the students will be able to:         CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.         CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services         CO3: Solve the real world problems using Cloud services and technologies         CO4: Develop and deploy services on the cloud and set up a cloud environment         CO5: Explain security challenges in the cloud environment         CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.         TEXT BOOKS:         1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.         1. Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology & Architecture", Prentice Hall, 2013.         REFERENCES:         1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,	Cost of Ownership.					
<ul> <li>OUTCOMES:</li> <li>At the end of this course, the students will be able to:</li> <li>CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.</li> <li>CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services</li> <li>CO3: Solve the real world problems using Cloud services and technologies</li> <li>CO4: Develop and deploy services on the cloud and set up a cloud environment</li> <li>CO5: Explain security challenges in the cloud environment</li> <li>CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.</li> <li>TEXT BOOKS: <ol> <li>Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.</li> <li>Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> </ol> </li> <li>REFERENCES: <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ul>		ТОТ	AL:	45 ]	PER	RIODS
<ul> <li>At the end of this course, the students will be able to:</li> <li>CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.</li> <li>CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services</li> <li>CO3: Solve the real world problems using Cloud services and technologies</li> <li>CO4: Develop and deploy services on the cloud and set up a cloud environment</li> <li>CO5: Explain security challenges in the cloud environment</li> <li>CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.</li> <li>TEXT BOOKS: <ol> <li>Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.</li> <li>Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> </ol> </li> <li>REFERENCES: <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ul>	<b>OUTCOMES:</b>					
<ul> <li>CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.</li> <li>CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services</li> <li>CO3: Solve the real world problems using Cloud services and technologies</li> <li>CO4: Develop and deploy services on the cloud and set up a cloud environment</li> <li>CO5: Explain security challenges in the cloud environment</li> <li>CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.</li> <li>TEXT BOOKS: <ol> <li>Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.</li> <li>Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> </ol> </li> <li>REFERENCES: <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ul>	At the end of this co	ourse, the students will be able to:				
<ul> <li>CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services</li> <li>CO3: Solve the real world problems using Cloud services and technologies</li> <li>CO4: Develop and deploy services on the cloud and set up a cloud environment</li> <li>CO5: Explain security challenges in the cloud environment</li> <li>CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.</li> <li>TEXT BOOKS: <ol> <li>Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.</li> <li>Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> </ol> </li> <li>REFERENCES: <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ul>	CO1: Exhibit cloud-	design skills to build and automate business solutions using cloud	techr	nolo	gies	
<ul> <li>cloud-based services</li> <li>CO3: Solve the real world problems using Cloud services and technologies</li> <li>CO4: Develop and deploy services on the cloud and set up a cloud environment</li> <li>CO5: Explain security challenges in the cloud environment</li> <li>CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.</li> <li>TEXT BOOKS: <ol> <li>Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.</li> <li>Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> </ol> </li> <li>REFERENCES: <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ul>	CO2: Possess Strong	g theoretical foundation leading to excellence and excitement to	ware	ds a	dopt	tion of
<ul> <li>CO3: Solve the real world problems using Cloud services and technologies</li> <li>CO4: Develop and deploy services on the cloud and set up a cloud environment</li> <li>CO5: Explain security challenges in the cloud environment</li> <li>CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.</li> <li>TEXT BOOKS: <ol> <li>Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.</li> <li>Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> </ol> </li> <li>REFERENCES: <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ul>	cloud-based se	rvices ~ VIII				
<ul> <li>CO4: Develop and deploy services on the cloud and set up a cloud environment</li> <li>CO5: Explain security challenges in the cloud environment</li> <li>CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.</li> <li>TEXT BOOKS: <ol> <li>Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.</li> <li>Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> </ol> </li> <li>REFERENCES: <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ul>	<b>CO3:</b> Solve the real	world problems using Cloud services and technologies				
<ul> <li>CO5: Explain security challenges in the cloud environment</li> <li>CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.</li> <li>TEXT BOOKS: <ol> <li>Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.</li> <li>Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> </ol> </li> <li>REFERENCES: <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ul>	<b>CO4:</b> Develop and d	eploy services on the cloud and set up a cloud environment				
<ul> <li>CO6: Demonstrate proficiency in integrating cloud technologies and services to address diverse business challenges effectively.</li> <li>TEXT BOOKS: <ol> <li>Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.</li> <li>Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> </ol> </li> <li>REFERENCES: <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ul>	<b>CO5:</b> Explain securit	ty challenges in the cloud environment				
<ul> <li>TEXT BOOKS:</li> <li>1. Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.</li> <li>1. Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> <li>REFERENCES: <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ul>	CO6: Demonstrate p	proficiency in integrating cloud technologies and services to addre	ss di	vers	se bi	usiness
<ol> <li>Exit BOOKS:         <ol> <li>Enamul Haque, "Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.</li> <li>Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> </ol> </li> <li>REFERENCES:         <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ol>	challenges effe	ectively.				
<ol> <li>Enamul Haque, 'Cloud Service Management and Governance: Smart Service Management in Cloud Era", Enel Publications, 2023.</li> <li>Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> <li><b>REFERENCES:</b> <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ol>	1 Enormal Hoors:	. "Cloud Service Menogement and Courses on Smort Service M	[			
<ol> <li>Thomas Erl, Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Concepts, Technology &amp; Architecture", Prentice Hall, 2013.</li> <li><b>REFERENCES:</b> <ol> <li>Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,</li> </ol> </li> </ol>	1. Enamul Haqu	ie, Cloud Service Management and Governance: Smart Service M Snel Publications 2023	anag	geille		11
Architecture", Prentice Hall, 2013. <b>REFERENCES:</b> 1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,	1 Thomas Frl	Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Conce	nte	Teo	hnol	OUN &
<b>REFERENCES:</b> 1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,	1. Πυπαδ EII, Δrehitecture"	Prentice Hall 2013	pis,	100	mol	ogy a
1. Thomas Erl, Robert Cope, Amin Naserpour, "Cloud Computing Design Patterns", Prentice Hall,	REFERENCES.	, i tonuce fian, 2013.				
1. Inomus En, Robert Cope, Amm Ruserpour, Croud Computing Design Fatterns, Frentiee Hall,	1 Thomas Frl I	Robert Cone Amin Naserbour, "Cloud Computing Design Patterns	" Pı	enti	ce F	Iall
	1. 111011100 1211, 1	Cooler cope, rinni ruserpour, croud computing Design rationic	, <b>, 1</b> 1	CIIII		

2015.

- 2. Praveen Ayyappa, "Economics of Cloud Computing", LAP Lambert Academic Publishing, 2020.
- 3. Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, "Mastering Cloud Computing Foundations and Applications Programming", Elsevier, 2013.

#### **VERTICAL IV – HIGH PERFORMANCE COMPUTING**

224 1/011	MULTI-CORE ARCHITECTURE AND	L	Т	Р	С
22AN1911	PROGRAMMING	3	0	0	3
<b>OBJECTIVES:</b>					
To understand the second	ne need for multi-core processors, and their architecture.				
To understand the second	ne challenges in parallel and multi-threaded programming.				
• To learn about t	he various parallel programming paradigms.				
To develop mul	ti core programs.				
To design parall	el solutions.				1
UNIT I	MULTI-CORE PROCESSORS				9
Single core to Multi-cor	e architectures – SIMD and MIMD systems – Interconnection ne	etwor	ks - S	Symm	netric
and Distributed Shared	Memory Architectures – Cache coherence - Performance Issue	s - Pa	aralle	l pro	gram
design					1
UNIT II	PARALLEL PROGRAM CHALLENGES				9
Performance – Scalabil	ity – Synchronization and data sharing – Data races – Synchr	oniza	tion ]	primi	tives
(mutexes, locks, sema	phores, barriers) – deadlocks and livelocks – communication	on be	etwee	en thi	reads
(condition variables, sig	nals, message queues and pipes).				-
UNIT III	SHARED MEMORY PROGRAMMING WITH OpenMP	· · · ·			9
Compiling and running	g OpenMP programs, The Trapezoidal rule, The parallel for d	irecti	ve, s	ched	uling
loops- Producers and co	onsumers .				
UNIT IV	DISTRIBUTED MEMORY PROGRAMMING WITH MI	PI			9
MPI program execution	– MPI constructs – libraries – MPI send and receive – Point-to-	point	and	Colle	ctive
communication – MPI	derived datatypes – Performance evaluation.	_			
	PARALLEL PROGRAM DEVELOPMENT	<u> </u>			9
Case studies - n-Body s	olvers – Tree Search – OpenMP and MPI implementations and	com	pariso	on.	opa
OUTCOMES.	101	AL:	45 P	EKI	UDS
OUICOMES:	as the students will be able to:				
CO1: Illustrata multi	se, the students will be able to:	00			
CO1: Industrate multiple $CO2$ : Identify the iso	use in programming Parallel Processors	,05.			
CO2. Identify the iss	s using OpenMP and MPI				
<b>CO4</b> : Design parallel	programming solutions to common problems				
<b>CO5</b> : Compare and c	ontrast programming for serial processors and programming for	r nara	allel		
processors	ondust programming for serial processors and programming for	r pure	liitei		
<b>CO6</b> : Elaborate on va	arious concepts of multi-core architectures.				
TEXT BOOKS:					
1. Peter S. Pacheco	o, "An Introduction to Parallel Programming". Morgan-Kauffm	an/El	sevie	er. 20	11.
2. Darryl Gove, "	Multicore Application Programming for Windows, Linux, a	nd O	racle	Sola	aris",
Pearson, 2011.					,
<b>REFERENCES:</b>					
1. Michael J Quint	n, "Parallel programming in C with MPI and OpenMPI", Tata M	/lcGra	aw H	ill,20	03.
2. Victor Alessandrini, "Shared Memory Application Programming Concepts and Strategies in					
Multicore Appli	cation Programming, ", 1st Edition, Morgan Kaufmann, 2015.				
3. Yan Solihin, "F	undamentals of Parallel Multicore Architecture", CRC Press, 20	015.			

OBJECTIVES:       Image: Comparison of CDP Architectures and CUDA Programming.         • To understand the basics of GPU Architectures and CUDA Programming.         • To learn synchronization using CUDA.         • To understand the various parallel algorithms on GPU.         • To understand the basics of OPENCL.         • UNIT I       GPU ARCHITECTURES AND CUDA PROGRAMMING         9         Heterogeneous Parallel Computing – Architecture of a modern GPU – Parallel Programming languages and models – GPU Computing – Introduction to Data Parallelism and CUDA C: Data Parallelism – CUDA Program Structure – A vector additional Kernel – Device Global Memory and Data Transfer – Kernel functions and Threading.         UNIT II       MULTI-DIMENSIONAL DATA & SYNCHRONIZATION       9         CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data – Synchronization and Transparent Scalability – Assigning resources to Blocks – Querying Device Properties – Thread Scheduling and Latency Tolerance.       9         CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.         UNIT IV       ALGORITHMS ON GPU       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         UNIT IV       ALGORITHMS ON GPU       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matri	22AM912	GPU COMPUTING	L 3	T	<b>P</b>	C 3
The Course will enable learners to:         • To understand the basics of GPU Architectures and CUDA Programming.         • To learn synchronization using CUDA.         • To discuss memories and its impact on performance.         • To understand the various parallel algorithms on GPU.         • To learn the basics of OPENCL.         UNIT I       GPU ARCHITECTURES AND CUDA PROGRAMMING       9         Heterogeneous Parallel Computing – Architecture of a modern GPU – Parallel Programming languages and models – GPU Computing – Introduction to Data Parallelism and CUDA C: Data Parallelism – CUDA Program Structure – A vector additional Kernel – Device Global Memory and Data Transfer – Kernel functions and Threading.       9         CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data – Synchronization and Transparent Scalability – Assigning resources to Blocks – Querying Device Properties – Thread Scheduling and Latency Tolerance.       9         CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         UNIT IV       ALGORITHMS ON GPU       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         UNIT V       OPENCL BASICS       9 <td< td=""><td>OBJECTIVES:</td><td></td><td>3</td><td>U</td><td>0</td><td>3</td></td<>	OBJECTIVES:		3	U	0	3
To understand the basics of GPU Architectures and CUDA Programming.     To learn synchronization using CUDA.     To discuss memories and its impact on performance.     To understand the various parallel algorithms on GPU.     To learn the basics of OPENCL.     UNIT I GPU ARCHITECTURES AND CUDA PROGRAMMING 9 Heterogeneous Parallel Computing – Architecture of a modern GPU – Parallel Programming languages and models – GPU Computing – Introduction to Data Parallelism and CUDA C: Data Parallelism – CUDA Program Structure – A vector additional Kernel – Device Global Memory and Data Transfer – Kernel functions and Threading.     UNIT II MULTI-DIMENSIONAL DATA & SYNCHRONIZATION 9 CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data – Synchronization and Transparent Scalability – Assigning resources to Blocks – Querying Device Properties – Thread Scheduling and Latency Tolerance.     UNIT II CUDA MEMORIES & PERFORMANCE 9 CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.     UNIT IV ALGORITHMS ON GPU 9 Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.     UNIT V OPENCL BASICS 9 Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.     TOTAL: 45 PERIODS OUTCOMES:     Upon completion of the course, the students will be able to:     CO2: Discuss synchronization using CUDA.     CO3: Elaborate CUDA memories and its impact on performance.     CO4: Design various parallel algorithms on GPU.     CO5: Solve simple problems using parallel algorithms.     CO6: Apply OpenCL to solve programs and improve performance.     TOTAL: 45 PERIODS     ODEMENT 9     Approach, Morgan Kaufman, Second Edition, 2013.     Benedict Gaster, Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third     Editori	The Course w	ill enable learners to:				
To learn synchronization using CUDA.     To discuss memories and its impact on performance.     To understand the various parallel algorithms on GPU.     To learn the basics of OPENCL.     UNIT I GPU ARCHITECTURES AND CUDA PROGRAMMING 9 Heterogeneous Parallel Computing – Architecture of a modern GPU – Parallel Porgramming languages and models – GPU Computing – Introduction to Data Parallelism and CUDA C: Data Parallelism – CUDA Program Structure – A vector additional Kernel – Device Global Memory and Data Transfer – Kernel functions and Threading.     UNIT II MULTI-DIMENSIONAL DATA & SYNCHRONIZATION 9 CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data – Synchronization and Transparent Scalability – Assigning resources to Blocks – Querying Device Properties – Thread Scheduling and Latency Tolerance.     UNIT III CUDA MEMORIES & PERFORMANCE 9 CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.     UNIT IV ALGORTITHMS ON GPU 9 Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.     UNIT V OPENCL BASICS 9 Portal L Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.     UNIT V OPENCL BASICS 9 CUDA Memory sparallel algorithms on GPU 9 CO3: Elaborate CUDA memories and its impact on performance.     CO4: Design various parallel algorithms on GPU.     CO5: Solve simple problems using parallel algorithms.     CO6: Apply OpenCL to solve programs and improve performance.     Text BOOKS:     Laward Math and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on     Approach, Morgan Kaufman, Scond Edition, 2013.     Benedict Gaster, Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third     Edition, Morgan Kaufman, 2012.	• To und	erstand the basics of GPU Architectures and CUDA Programming	<u>z</u> .			
<ul> <li>To discuss memories and its impact on performance.</li> <li>To understand the various parallel algorithms on GPU.</li> <li>To learn the basics of OPENCL.</li> <li>UNIT I GPU ARCHITECTURES AND CUDA PROGRAMMING 9</li> <li>Heterogeneous Parallel Computing – Architecture of a modern GPU – Parallel Programming languages and models – GPU Computing – Introduction to Data Parallelism and CUDA C: Data Parallelism – CUDA Program Structure – A vector additional Kernel – Device Global Memory and Data Transfer – Kernel functions and Threading.</li> <li>UNIT II MULTI-DIMENSIONAL DATA &amp; SYNCHRONIZATION 9</li> <li>CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data – Synchronization and Transparent Scalability – Assigning resources to Blocks – Querying Device Properties – Thread Scheduling and Latency Tolerance.</li> <li>UNIT III CUDA MEMORIES &amp; PERFORMANCE 9</li> <li>CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.</li> <li>UNIT IV ALGORITHMS ON GPU 9</li> <li>Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.</li> <li>UNIT V OPENCL BASICS 9</li> <li>Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.</li> <li>TOTAL: 45 PERIODS</li> <li>OUTCOMES:</li> <li>Upon completion of the course, the students will be able to:</li> <li>CO2: Discuss synchronization using CUDA.</li> <li>CO3: Elaborate CUDA memories and its impact on performance.</li> <li>CO4: Design various parallel algorithms on GPU.</li> <li>CO5: Solve simple problems using parallel algorithms.</li> <li>CO6: Apply OpenCL to solve programs and improve performance.</li> <li>TEXT BOOKS:         <ul> <li>David Kirk and Wen-mei Hwu, Programming</li></ul></li></ul>	• To lear	n synchronization using CUDA.				
<ul> <li>To understand the various parallel algorithms on GPU.</li> <li>To learn the basics of OPENCL.</li> <li>UNIT I GPU ARCHITECTURES AND CUDA PROGRAMMING 9</li> <li>Heterogeneous Parallel Computing – Architecture of a modern GPU – Parallel Programming languages and models – GPU Computing – Introduction to Data Parallelism and CUDA C: Data Parallelism – CUDA Program Structure – A vector additional Kernel – Device Global Memory and Data Transfer – Kernel functions and Threading.</li> <li>UNIT II MULTI-DIMENSIONAL DATA &amp; SYNCHRONIZATION 9</li> <li>CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data – Synchronization and Transparent Scalability – Assigning resources to Blocks – Querying Device Properties – Thread Scheduling and Latency Tolerance.</li> <li>UNIT III CUDA MEMORIES &amp; PERFORMANCE 9</li> <li>CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.</li> <li>UNIT IV ALGORITIMS ON GPU 9</li> <li>Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.</li> <li>UNIT V OPENCL BASICS 9</li> <li>Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.</li> <li>TOTAL: 45 PERIODS</li> <li>OUTCOMES:</li> <li>Upon completion of the course, the students will be able to:</li> <li>CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.</li> <li>CO2: Discuss synchronization using CUDA.</li> <li>CO3: Elaborate CUDA memories and its impact on performance.</li> <li>CO4: besign various parallel algorithms on GPU.</li> <li>CO5: Solve simple problems using parallel algorithms.</li> <li>CO6: Apply OpenCL to solve programs and improve performance.</li> <li>TEXT BOOKS:         <ul> <li>1. Dav</li></ul></li></ul>	To disc	cuss memories and its impact on performance.				
<ul> <li>To learn the basics of OPENCL.</li> <li>UNIT I GPU ARCHITECTURES AND CUDA PROGRAMMING 9</li> <li>Heterogeneous Parallel Computing – Architecture of a modern GPU – Parallel Programming languages and models – GPU Computing – Introduction to Data Parallelism and CUDA C: Data Parallelism – CUDA Program Structure – A vector additional Kernel – Device Global Memory and Data Transfer – Kernel functions and Threading.</li> <li>UNIT II MULTI-DIMENSIONAL DATA &amp; SYNCHRONIZATION 9</li> <li>CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data – Synchronization and Transparent Scalability – Assigning resources to Blocks – Querying Device Properties – Thread Scheduling and Latency Tolerance.</li> <li>UNIT III CUDA MEMORIES &amp; PERFORMANCE 9</li> <li>CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.</li> <li>UNIT IV ALGORITHMS ON GPU 9</li> <li>Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.</li> <li>UNIT V OPENCL BASICS 9</li> <li>Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.</li> <li>TOTAL: 45 PERIODS</li> <li>OUTCOMES:</li> <li>Upon completion of the course, the students will be able to:</li> <li>CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.</li> <li>CO2: Elaborate CUDA memories and its impact on performance.</li> <li>CO4: Design various parallel algorithms on GPU.</li> <li>CO5: Solve simple problems using parallel algorithms.</li> <li>CO6: Apply OpenCL to solve programs and improve performance.</li> <li>TEXT BOOKS:         <ul> <li>David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2</li></ul></li></ul>	• To und	erstand the various parallel algorithms on GPU.				
UNIT I       GPU ARCHITECTURES AND CUDA PROGRAMMING       9         Heterogeneous Parallel Computing – Architecture of a modern GPU – Parallel Programming languages and models – GPU Computing – Introduction to Data Parallelism and CUDA C: Data Parallelism – CUDA Program Structure – A vector additional Kernel – Device Global Memory and Data Transfer – Kernel functions and Threading.       9         UNIT II       MULTI-DIMENSIONAL DATA & SYNCHRONIZATION       9         CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data – Synchronization and Transparent Scalability – Assigning resources to Blocks – Querying Device Properties – Thread Scheduling and Latency Tolerance.       9         CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         UNIT V       ALGORITHMS ON GPU       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         UNIT V       OPENCL BASICS       9         OUTCOMES:       10       9         Upon completion of the course, the students will be able to: CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.       9         CO2: Discuss synchronization using CUDA.       CO3: Elaborate CUDA memories and its impact o	• To lear	n the basics of OPENCL.				
Heterogeneous Parallel Computing – Architecture of a modern GPU – Parallel Programming languages and models – GPU Computing – Introduction to Data Parallelism and CUDA C: Data Parallelism – CUDA Program Structure – A vector additional Kernel – Device Global Memory and Data Transfer – Kernel functions and Threading.         UNIT II       MULTI-DIMENSIONAL DATA & SYNCHRONIZATION       9         CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data – Synchronization and Transparent Scalability – Assigning resources to Blocks – Querying Device Properties – Thread Scheduling and Latency Tolerance.       9         CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Paritioning of Execution Resources – Instruction Mix and Thread Granularity.       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         UNIT V       ALGORITHMS ON GPU       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         UNIT V       OPENCL BASICS       9         Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.       9         CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.       9         CO2: Discuss synchronization using CUDA.       CO4: Design various parallel algorithms on GPU.       CO5: Solve simple problems using parallel algorithms.         CO6:	UNIT I	GPU ARCHITECTURES AND CUDA PROGRAMMING				9
models - GPU Computing - Introduction to Data Parallelism and CUDA C: Data Parallelism - CUDA         Program Structure - A vector additional Kernel - Device Global Memory and Data Transfer - Kernel functions and Threading.         UNIT II       MULTI-DIMENSIONAL DATA & SYNCHRONIZATION       9         CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data - Synchronization and Transparent Scalability - Assigning resources to Blocks - Querying Device Properties - Thread Scheduling and Latency Tolerance.       9         CUDA Memories - Memory Access Efficiency - CUDA Device Memory Types - Reducing global Memory Traffic - Performance Considerations - Warps and Thread Execution - Global Memory Bandwidth - Dynamic Partitioning of Execution Resources - Instruction Mix and Thread Granularity.       9         Parallel Patterns: Convolution - Prefix Sum - Sparse Matrix - Vector Multiplication.       9         UNIT IV       ALGORITHMS ON GPU       9         Introduction - OpenCL BASICS       9         Introduction - OpenCL Platform Model - Execution Model - Programming model - Memory Model - OpenCL Runtime.       9         CO2: Discuss synchronization using CUDA.       CO3: Elaborate CUDA memories and its impact on performance.       CO4: Design various parallel algorithms on GPU.         CO5: Solve simple problems using parallel algorithms.       CO6: Apply OpenCL to solve programs and improve performance.         TTXT BOOKS:       1. David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors - A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.       2	Heterogeneous Paral	llel Computing – Architecture of a modern GPU – Parallel Program	nmin	g lar	iguag	es and
Program Structure – A vector additional Kernel – Device Global Memory and Data Transfer – Kernel functions and Threading.       UNIT II       MULTI-DIMENSIONAL DATA & SYNCHRONIZATION       9         CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data – Synchronization and Transparent Scalability – Assigning resources to Blocks – Querying Device Properties – Thread Scheduling and Latency Tolerance.       9         CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.       9         OUTCOMES:       10         Upon completion of the course, the students will be able to:       CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.         CO2: Discuss synchronization using CUDA.       CO5: Solve simple problems using parallel algorithms.       CO6: Apply OpenCL to solve programs and improve performance.         TEXT BOOKS:       1. David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufman, Second Edition, 2013.       2. Benedict Gaster, Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.	models – GPU Con	nputing – Introduction to Data Parallelism and CUDA C: Data	Paral	lelisi	n – (	CUDA
functions and Threading.       9         UNIT II       MULTI-DIMENSIONAL DATA & SYNCHRONIZATION       9         CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data - Synchronization and Transparent Scalability - Assigning resources to Blocks - Querying Device Properties - Thread Scheduling and Latency Tolerance.       9         UNIT III       CUDA MEMORIES & PERFORMANCE       9         CUDA Memories - Memory Access Efficiency - CUDA Device Memory Types - Reducing global Memory Traffic - Performance Considerations - Warps and Thread Execution - Global Memory Bandwidth - Dynamic Partitioning of Execution Resources - Instruction Mix and Thread Granularity.       9         UNIT IV       ALGORITHMS ON GPU       9         Parallel Patterns: Convolution - Prefix Sum - Sparse Matrix - Vector Multiplication.       9         Introduction - OpenCL BASICS       9         Introduction - OpenCL Platform Model - Execution Model - Programming model - Memory Model - OpenCL Runtime.       9         OUTCOMES:       10       10         Upon completion of the course, the students will be able to:       10         CO1:       Understand the basics of GPU Architectures and implement simple CUDA Programs.         CO2:       Discuss synchronization using CUDA.         CO3:       Elaborate CUDA memories and its impact on performance.         CO4:       Design various parallel algorithms on GPU.         CO5:       Solve simple probl	Program Structure -	- A vector additional Kernel – Device Global Memory and Da	ta Tr	ansf	er – 1	Kernel
UNIT II         MULTI-DIMENSIONAL DATA & SYNCHRONIZATION         9           CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data - Synchronization and Transparent Scalability - Assigning resources to Blocks - Querying Device Properties - Thread Scheduling and Latency Tolerance.         9           UNIT III         CUDA MEMORIES & PERFORMANCE         9           CUDA Memories - Memory Access Efficiency - CUDA Device Memory Types - Reducing global Memory Traffic - Performance Considerations - Warps and Thread Execution - Global Memory Bandwidth - Dynamic Partitioning of Execution Resources - Instruction Mix and Thread Granularity.         9           Parallel Patterns: Convolution - Prefix Sum - Sparse Matrix - Vector Multiplication.         9           Introduction - OpenCL Platform Model - Execution Model - Programming model - Memory Model - OpenCL Runtime.         9           OUTCOMES:         Upon completion of the course, the students will be able to: CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.         9           CO2: Discuss synchronization using CUDA.         CO3: Elaborate CUDA memories and its impact on performance.         CO4: Design various parallel algorithms on GPU.           CO5: Solve simple problems using parallel algorithms.         CO6: Apply OpenCL to solve programs and improve performance.           TEXT BOOKS:         1. David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors - A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.         2. Benedict Gaster, Lee Howes, David R. Kacli , "Heterogeneous Computing with OpenCL", Third	functions and Thread	ding.				
CUDA Thread Organization - Mapping Threads to Multi-Dimensional Data - Synchronization and Transparent Scalability - Assigning resources to Blocks - Querying Device Properties - Thread Scheduling and Latency Tolerance.         UNIT III       CUDA MEMORIES & PERFORMANCE       9         CUDA Memories - Memory Access Efficiency - CUDA Device Memory Types - Reducing global Memory Traffic - Performance Considerations - Warps and Thread Execution - Global Memory Bandwidth - Dynamic Partitioning of Execution Resources - Instruction Mix and Thread Granularity.       9         Parallel Patterns: Convolution - Prefix Sum - Sparse Matrix - Vector Multiplication.       9         Introduction - OpenCL BaSICS       9         Introduction - OpenCL Platform Model - Execution Model - Programming model - Memory Model - OpenCL Runtime.       9         OUTCOMES:       Upon completion of the course, the students will be able to:       9         CO3: Elaborate CUDA memories and its impact on performance.       CO4: Design various parallel algorithms on GPU.       9         CO5: Solve simple problems using parallel algorithms.       CO6: Apply OpenCL to solve programs and improve performance.       CO4: Design various parallel algorithms.       CO6: Apply OpenCL to solve programs and improve performance.         TEXT BOOKS:       1.       David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors - A hands-on Approach, Morgan Kaufman, Second Edition, 2013.       2.       Benedict Gaster, Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012. <td>UNIT II</td> <td>MULTI-DIMENSIONAL DATA &amp; SYNCHRONIZATION</td> <td></td> <td></td> <td></td> <td>9</td>	UNIT II	MULTI-DIMENSIONAL DATA & SYNCHRONIZATION				9
Transparent Scalability – Assigning resources to Blocks – Querying Device Properties – Thread Scheduling and Latency Tolerance.       9         UNIT III       CUDA MEMORIES & PERFORMANCE       9         CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.       9         UNIT IV       ALGORITHMS ON GPU       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         UNIT V       OPENCL BASICS       9         Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.       70TAL: 45 PERIODS         OUTCOMES:       Upon completion of the course, the students will be able to:       70TAL: 45 PERIODS         OUTCOMES:       Upon completion of the course, the students will be able to:       70TAL: 45 PERIODS         CO3: Elaborate CUDA memories and its impact on performance.       704: Design various parallel algorithms.       705: Solve simple problems using parallel algorithms.         CO6: Apply OpenCL to solve programs and improve performance.       705: Apply OpenCL to solve programs and improve performance.       705: Apply OpenCL to solve programs and improve performance.         TEXT BOOKS:       1. David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufman, Second E	CUDA Thread Org	anization - Mapping Threads to Multi-Dimensional Data –	Syncl	hron	izatio	n and
and Latency Tolerance.       9         UNIT III       CUDA MEMORIES & PERFORMANCE       9         CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.       9         UNIT IV       ALGORITHMS ON GPU       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         UNIT V       OPENCL BASICS       9         Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.       9         OUTCOMES:       Upon completion of the course, the students will be able to: CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.       CO2: Discuss synchronization using CUDA.         CO3: Elaborate CUDA memories and its impact on performance.       CO4: Design various parallel algorithms on GPU.       CO5: Solve simple problems using parallel algorithms.         CO6: Apply OpenCL to solve programs and improve performance.       TEXT BOOKS:       1       David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.       2.       Benedict Gaster, Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.	Transparent Scalabil	ity – Assigning resources to Blocks – Querying Device Properties	– Th	read	Sche	duling
UNIT IIICUDA MEMORIES & PERFORMANCE9CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.9UNIT IVALGORITHMS ON GPU9Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.9UNIT VOPENCL BASICS9Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.9OUTCOMES: Upon completion of the course, the students will be able to: CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.9CO2: Discuss synchronization using CUDA. CO3: Elaborate CUDA memories and its impact on performance.TOTAL: 45 PERIODSCO4: Design various parallel algorithms on GPU. CO5: Solve simple problems using parallel algorithms.CO6: Apply OpenCL to solve programs and improve performance.TEXT BOOKS: 1. David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.A hands-on Approach, Morgan Kaufman, 2012.	and Latency Toleran	ice.				
CUDA Memories – Memory Access Efficiency – CUDA Device Memory Types – Reducing global Memory Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.         UNIT IV       ALGORITHMS ON GPU       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         UNIT V       OPENCL BASICS       9         Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.       9         OUTCOMES:       Upon completion of the course, the students will be able to: CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.       CO2: Discuss synchronization using CUDA.         CO3: Elaborate CUDA memories and its impact on performance.       CO4: Design various parallel algorithms on GPU.       CO5: Solve simple problems using parallel algorithms.         CO6: Apply OpenCL to solve programs and improve performance.       TEXT BOOKS:       1         1. David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.       2         2. Benedict Gaster, Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.       2013.	UNIT III	CUDA MEMORIES & PERFORMANCE				9
Traffic – Performance Considerations - Warps and Thread Execution – Global Memory Bandwidth – Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.         UNIT IV       ALGORITHMS ON GPU       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         Introduction – OpenCL BASICS       9         Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.       9         OUTCOMES:       10         Upon completion of the course, the students will be able to:       10         CO1:       Understand the basics of GPU Architectures and implement simple CUDA Programs.         CO2:       Discuss synchronization using CUDA.         CO3:       Elaborate CUDA memories and its impact on performance.         CO4:       Design various parallel algorithms on GPU.         CO5:       Solve simple problems using parallel algorithms.         CO6:       Apply OpenCL to solve programs and improve performance.         TEXT BOOKS:       1.         1.       David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.         2.       Benedict Gaster, Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.	CUDA Memories –	Memory Access Efficiency – CUDA Device Memory Types – Red	ucing	glol	oal M	emory
Dynamic Partitioning of Execution Resources – Instruction Mix and Thread Granularity.       9         UNIT IV       ALGORITHMS ON GPU       9         Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         UNIT V       OPENCL BASICS       9         Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.       TOTAL: 45 PERIODS         OUTCOMES:       Upon completion of the course, the students will be able to:       CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.         CO2: Discuss synchronization using CUDA.       CO3: Elaborate CUDA memories and its impact on performance.       CO4: Design various parallel algorithms on GPU.         CO5: Solve simple problems using parallel algorithms.       CO6: Apply OpenCL to solve programs and improve performance.         TEXT BOOKS:       1. David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufman, Second Edition, 2013.       2. Benedict Gaster, Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.	Traffic – Performan	nce Considerations - Warps and Thread Execution – Global M	lemor	y B	andw	idth –
UNIT IVALGORITHMS ON GPU9Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.UNIT VOPENCL BASICSUNIT VOPENCL BASICS9Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.TOTAL: 45 PERIODSOUTCOMES: Upon completion of the course, the students will be able to: CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.CO2: CO2: Discuss synchronization using CUDA. CO3: Elaborate CUDA memories and its impact on performance. CO4: Design various parallel algorithms on GPU. CO5: Solve simple problems using parallel algorithms. CO6: Apply OpenCL to solve programs and improve performance.TEXT BOOKS: I. David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufman, Second Edition, 2013. 2. Benedict Gaster, Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.	Dynamic Partitionin	g of Execution Resources – Instruction Mix and Thread Granulari	ty.			
Parallel Patterns: Convolution – Prefix Sum – Sparse Matrix – Vector Multiplication.       9         UNIT V       OPENCL BASICS       9         Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.       TOTAL: 45 PERIODS         OUTCOMES:       TOTAL: 45 PERIODS         Upon completion of the course, the students will be able to:       TOTAL: 45 PERIODS         CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.       CO2:         CO2: Discuss synchronization using CUDA.       CO3: Elaborate CUDA memories and its impact on performance.         CO4: Design various parallel algorithms on GPU.       CO5: Solve simple problems using parallel algorithms.         CO6: Apply OpenCL to solve programs and improve performance.       TEXT BOOKS:         1. David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.         2. Benedict Gaster, Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.	UNIT IV	ALGORITHMS ON GPU				9
UNIT VOPENCL BASICS9Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime.TOTAL: 45 PERIODSOUTCOMES: Upon completion of the course, the students will be able to: CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.CO2: 	Parallel Patterns: Co	nvolution – Prefix Sum – Sparse Matrix – Vector Multiplication.				
Introduction – OpenCL Platform Model – Execution Model – Programming model – Memory Model – OpenCL Runtime. TOTAL: 45 PERIODS OUTCOMES: Upon completion of the course, the students will be able to: CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs. CO2: Discuss synchronization using CUDA. CO3: Elaborate CUDA memories and its impact on performance. CO4: Design various parallel algorithms on GPU. CO5: Solve simple problems using parallel algorithms. CO6: Apply OpenCL to solve programs and improve performance. TEXT BOOKS: 1. David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013. 2. Benedict Gaster,Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.	UNIT V	OPENCL BASICS				9
OpenCL Runtime.       TOTAL: 45 PERIODS         OUTCOMES:       Upon completion of the course, the students will be able to:         CO1:       Understand the basics of GPU Architectures and implement simple CUDA Programs.         CO2:       Discuss synchronization using CUDA.         CO3:       Elaborate CUDA memories and its impact on performance.         CO4:       Design various parallel algorithms on GPU.         CO5:       Solve simple problems using parallel algorithms.         CO6:       Apply OpenCL to solve programs and improve performance.         TEXT BOOKS:       1.         David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.         2.       Benedict Gaster,Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.	Introduction – Ope	nCL Platform Model – Execution Model – Programming model	– M	emo	ry M	odel –
<ul> <li>OUTCOMES:</li> <li>Upon completion of the course, the students will be able to:</li> <li>CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.</li> <li>CO2: Discuss synchronization using CUDA.</li> <li>CO3: Elaborate CUDA memories and its impact on performance.</li> <li>CO4: Design various parallel algorithms on GPU.</li> <li>CO5: Solve simple problems using parallel algorithms.</li> <li>CO6: Apply OpenCL to solve programs and improve performance.</li> <li>TEXT BOOKS: <ol> <li>David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.</li> <li>Benedict Gaster,Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.</li> </ol> </li> </ul>	OpenCL Runtime.					
<ul> <li>OUTCOMES:</li> <li>Upon completion of the course, the students will be able to:</li> <li>CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.</li> <li>CO2: Discuss synchronization using CUDA.</li> <li>CO3: Elaborate CUDA memories and its impact on performance.</li> <li>CO4: Design various parallel algorithms on GPU.</li> <li>CO5: Solve simple problems using parallel algorithms.</li> <li>CO6: Apply OpenCL to solve programs and improve performance.</li> <li>TEXT BOOKS: <ol> <li>David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.</li> <li>Benedict Gaster,Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.</li> </ol> </li> </ul>		TO	DTAL	<b>45</b>	PER	IODS
<ul> <li>Upon completion of the course, the students will be able to:</li> <li>CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.</li> <li>CO2: Discuss synchronization using CUDA.</li> <li>CO3: Elaborate CUDA memories and its impact on performance.</li> <li>CO4: Design various parallel algorithms on GPU.</li> <li>CO5: Solve simple problems using parallel algorithms.</li> <li>CO6: Apply OpenCL to solve programs and improve performance.</li> <li>TEXT BOOKS: <ol> <li>David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.</li> <li>Benedict Gaster,Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.</li> </ol> </li> </ul>	<b>OUTCOMES:</b>					
<ul> <li>CO1: Understand the basics of GPU Architectures and implement simple CUDA Programs.</li> <li>CO2: Discuss synchronization using CUDA.</li> <li>CO3: Elaborate CUDA memories and its impact on performance.</li> <li>CO4: Design various parallel algorithms on GPU.</li> <li>CO5: Solve simple problems using parallel algorithms.</li> <li>CO6: Apply OpenCL to solve programs and improve performance.</li> <li>TEXT BOOKS: <ol> <li>David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.</li> <li>Benedict Gaster, Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.</li> </ol> </li> </ul>	Upon completion of	f the course, the students will be able to:				
<ul> <li>CO2: Discuss synchronization using CUDA.</li> <li>CO3: Elaborate CUDA memories and its impact on performance.</li> <li>CO4: Design various parallel algorithms on GPU.</li> <li>CO5: Solve simple problems using parallel algorithms.</li> <li>CO6: Apply OpenCL to solve programs and improve performance.</li> <li>TEXT BOOKS: <ol> <li>David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.</li> <li>Benedict Gaster,Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.</li> </ol> </li> </ul>	<b>CO1</b> : Understand th	ne basics of GPU Architectures and implement simple CUDA Pro-	grams	s.		
<ul> <li>CO3: Elaborate CUDA memories and its impact on performance.</li> <li>CO4: Design various parallel algorithms on GPU.</li> <li>CO5: Solve simple problems using parallel algorithms.</li> <li>CO6: Apply OpenCL to solve programs and improve performance.</li> <li>TEXT BOOKS: <ol> <li>David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.</li> <li>Benedict Gaster,Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.</li> </ol> </li> </ul>	CO2: Discuss sync	chronization using CUDA.				
<ul> <li>CO4: Design various parallel algorithms on GPU.</li> <li>CO5: Solve simple problems using parallel algorithms.</li> <li>CO6: Apply OpenCL to solve programs and improve performance.</li> <li>TEXT BOOKS: <ol> <li>David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.</li> <li>Benedict Gaster,Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.</li> </ol> </li> </ul>	CO3: Elaborate CU	DA memories and its impact on performance.				
<ul> <li>COS: Solve simple problems using parallel algorithms.</li> <li>CO6: Apply OpenCL to solve programs and improve performance.</li> <li>TEXT BOOKS: <ol> <li>David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.</li> <li>Benedict Gaster,Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.</li> </ol></li></ul>	CO4: Design vario	bus parallel algorithms on GPU.				
<ul> <li>CO6: Apply OpenCL to solve programs and improve performance.</li> <li>TEXT BOOKS: <ol> <li>David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.</li> <li>Benedict Gaster,Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.</li> </ol></li></ul>	COS: Solve simple	e problems using parallel algorithms.				
<ol> <li>David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.</li> <li>Benedict Gaster,Lee Howes, David R. Kaeli, "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.</li> </ol>	CO6: Apply Open	CL to solve programs and improve performance.				
<ol> <li>David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors – A hands-on Approach, Morgan Kaufmann, Second Edition, 2013.</li> <li>Benedict Gaster,Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.</li> </ol>	TEXT BOOKS:		A 1	1		
<ol> <li>Approach, Morgan Kaufmann, Second Edition, 2013.</li> <li>Benedict Gaster,Lee Howes, David R. Kaeli , "Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.</li> </ol>	1. David Kirk a	and wen-mei Hwu, Programming Massively Parallel Processors –	A ha	nds-	on	
2. Benedict Gaster, Lee Howes, David K. Kaen , Heterogeneous Computing with OpenCL", Third Edition, Morgan Kaufman, 2012.	Approach, M	lorgan Kaulmann, Second Edition, 2013.	0	nCI	» тı.	ind
Euruon, Morgan Kaunnan, 2012.	2. Benedict Gas	Ster, Lee nowes, David K. Kaell, "Heterogeneous Computing With	1 Ope	nul	, in	ira
	Edition, Mor	gan Kauman, 2012.				

- 1. David Kaeli, Perhaad Mistry, Dana Schaa, Dong Ping Zhang, "Heterogeneous Computing with OpenCL 2.0", Third Edition, Morgan Kaufman, 2015.
- 2. John L.Hennessy and David A. Patterson, "Computer Architecture A Quantitative Approach", Sixth Edition, Morgan Kaufman, 2017.
- 3. NPTEL Courses:
  - a. GPU Architectures And Programming
    - https://onlinecourses.nptel.ac.in/noc23_cs61/preview

	L	Т	P	С
DIGITAL SIGNAL PROCESSING	3	0	0	3
OBJECTIVES:				
The Course will enable learners to:				
• Describe discrete time signals & systems and represent in frequency domain.				
• Apply the principles of z-transforms to finite difference equations.				
• Get familiarized with various structures of IIR and FIR systems.				
• Design and realize various digital filters for digital signal processing.				
• Understand the architecture of various digital signal processors.				
UNIT I INTRODUCTION			9	
Classification of systems: Continuous, discrete, linear, causal, stability, dynamic, recu	rsiv	e, tim	e va	riance;
classification of signals: continuous and discrete, energy and power; mathematical repr	esen	tation	of s	signals,
sampling techniques, quantization, quantization error, Nyquist rate, aliasing effect.				
UNIT II DISCRETE TIME SYSTEM ANALYSIS			9	
Z-transform and its properties, inverse z-transforms; difference equation - Solution	n by	y z ti	rans	form,
application to discrete systems - Stability analysis, frequency response - Convolut	ion	– (Li	inea	r and
circular convolution)				
UNIT III DISCRETE FOURIER TRANSFORM & COMPUTATION			9	
Discrete Fourier Transform- properties, magnitude and phase representation - Comput	atior	n of D	FT	using
FFT algorithm – DIT &DIF using radix 2 FFT – Butterfly structure.				
UNIT IV DESIGN OF DIGITAL FILTERS			9	
FIR & IIR filter realization - Parallel & cascade forms. FIR design: Windowing Tech	niqu	es - 1	Nee	d and
choice of windows - Linear phase characteristics. Analog filter design - Butterwor	th a	nd C	heby	yshev
approximations; IIR Filters, digital design using impulse invariant and bilinear transfe	orma	tion	War	ping,
pre warping.				
UNIT V DIGITAL SIGNAL PROCESSORS			9	
Introduction - Architecture of TMS320C50X- Features - Addressing Formats - F	unct	ional	mo	des -
Architecture of TMS320C54X.				
ТО	TA	L: 45	5 PE	RIODS
OUTCOMES:				
At the end of this course, the students will be able to:				
<b>CO1:</b> Analyze the properties of various Signals and Systems.				
<b>CO2:</b> Apply Z transform technique in Discrete Time signal analysis.				
CO3: Examine Discrete Time Linear Time-Invariant (LTI) systems utilizing Discrete-	Tim	e Fou	rier	
Transform (DTFT).				
CO4: Compute decimation-in time - FFT and decimation-in-frequency - FFT for reduc	cing	the		
computational complexity of DFT.				
<b>CO5:</b> Analyze IIR and FIR Filters on digital signal processors.				
<b>CO6:</b> Summarize the architecture of programmable digital signal processors.				
TEXT BOOKS:				
1. S.K. Mitra, Digital Signal Processing: Computer Based Approach, 4th edition,	TM	H, Ne	ew I	Jelhi,
India, 2013.				
114				

- 2. J. G. Proakis, D.G. Manolakis and D. Sharma, Digital Signal Processing Principles, Algorithms and Applications, 4th edition, Pearson Education, Noida, India-2014.
- 3. Lonnie C. Ludeman, "Fundamentals of Digital Signal Processing", Wiley -2013.

#### **REFERENCES:**

- 1. Poorna Chandra S, Sasikala. B. Digital Signal Processing, Vijay Nicole/TMH, 2013.
- 2. Robert Schilling & Sandra L.Harris, Introduction to Digital Signal Processing using Matlab", Cengage Learning, 2014.
- 3. Sen M. Kuo, Woon-Seng S. Gan, "Digital Signal Processors, Architecture, Implementations & Applications", Pearson, 2013.
- 4. Dimitris G.Manolakis, Vinay K. Ingle, applied Digital Signal Processing, Cambridge, 2012.
- 5. Oppenhiem V.A.V and Schaffer R.W, Discrete time Signal Processing, 3rd edition, Prentice Hall, New Jersey, US, 2013.

		T	т	р	C
22CS924	QUANTUM COMPUTING	3	0	1 0	$\frac{c}{3}$
OBJECTIVES		U	Ū	v	<u> </u>
The Course wi	ll enable learners to:				
<ul> <li>Analyse</li> </ul>	the behaviour of basic quantum algorithms.				
• Discuss	simple quantum algorithms and information channels in the quantum c	ircui	t mod	lel.	
• Apply t	he quantum algorithms in superdense coding and quantum teleportation	1.			
Analyse	the algorithms with super-polynomial speed-up.				
• Illustrat	e a simple quantum error-correcting code.				
UNIT I	FOUNDATION			9	
Overview of the	aditional computing – Church-Turing thesis – circuit model of com	puta	tion -	rev	/ersible
computation -	quantum physics - quantum physics and computation - Dirac notation	and	Hilbe	rt S	paces –
dual vectors -	operators - the spectral theorem - functions of operators - tensor	proc	ducts	- S	chmidt
decomposition	theorem.				
UNIT II	<b>QUBITS AND QUANTUM MODEL OF COMPUTATION</b>			9	
State of a quar	ntum system - time evolution of a closed system - composite system	s - r	neasu	rem	ent –
mixed states an	nd general quantum operations – quantum circuit model – quantum ga	tes –	- univ	ersa	d sets
of quantum gat	tes – unitary transformations – quantum circuits.				
UNIT III	QUANTUM ALGORITHMS-I			9	
Superdense co	ding – quantum teleportation – applications of teleportation – probabilis	stic v	ersus	qua	ntum
algorithms – pl	nase kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm -	- Sin	non's a	algo	rithm
– Quantum pha	ase estimation and quantum Fourier Transform – eigenvalue estimation	•			
UNIT IV	QUANTUM ALGORITHMS – II			9	
Order-finding	problem – eigenvalue estimation approach to order finding – Shor's a	algor	ithm	for	order
finding – findir	ng discrete logarithms – hidden subgroups – Grover's quantum search alg	gorith	nm – a	mp	litude
amplification	– quantum amplitude estir	natio	n		—
quantum cou	inting – searching without knowing the success pro	babi	lity.		
UNIT V	QUANTUM COMPUTATIONAL COMPLEXITY AND ERRO	R		9	
	CORRECTION				
Computational	complexity – black-box model – lower bounds for searching – gener	al bl	ack-b	OX ]	lower
bounds – poly	nomial method – block sensitivity – adversary methods – classical	erro	or cor	rect	ion –
classical three-	bit code – fault tolerance – quantum error correction – three- and nine-q	ubit	quant	um	codes
- tault-tolerant	quantum computation.		r		DICE
0.100.000.000	TC	DTA]	L: 45	PE	RIODS
<b>OUTCOMES:</b>					

At the end of this course, the students will be able to:

- **CO1:** Analyse the behaviour of basic quantum algorithms.
- **CO2:** Discuss simple quantum algorithms and information channels in the quantum circuit model.
- CO3: Apply the quantum algorithms in superdense coding and quantum Teleportation.
- **CO4:** Analyse the algorithms with super polynomial speed-up.

**CO5:** Illustrate a simple quantum error-correcting code.

**CO6:** Elaborate various quantum alogirthms.

#### **TEXT BOOKS:**

- 4. P. Kaye, R. Laflamme, and M. Mosca, "An introduction to Quantum Computing", Oxford University Press, 2007.
- 5. E. Rieffel and W. Polak, "Quantum Computing A Gentle Introduction", The MIT Press Cambridge, 2011.

#### **REFERENCES:**

- 6. Jack D. Hidary "Quantum Computing: An Applied Approach", Springer, 2019.
- 7. V. Sahni, "Quantum Computing", Tata McGraw-Hill Publishing Company, 2007.
- 8. Michael A. Nielsen and Issac L. Chuang, "Quantum Computation and Quantum Information", Tenth Edition, Cambridge University Press, 2010.

# ENGINEERING COLLEGE

				-		
22AM913	SCALABLE MACHIN	IE LEARNING	L	Т	Р	С
			3	0	0	3
<b>OBJECTIVES:</b>						
<ul> <li>Discuss the basis</li> </ul>	cs of how distributed computi	ng is applied in scaling	g up 1	mac	hine	e learning process.
• Use scalable ma	chine learning frameworks for	r parallel learning.				
<ul> <li>Apply parallel N</li> </ul>	Aachine Learning Algorithms	that can scale up.				
<ul> <li>Distinguish trad</li> </ul>	itional ML algorithms and Sca	alable ML algorithms.				
<ul> <li>Discuss alternat</li> </ul>	ive learning for scalability.					
• Solve Large-sca	le real-world problems using	GPUs and Multi-core s	yste	ms.		
UNIT I	INTRODUCTION				9	)
Scaling Up – Reasons –	- Key Concepts – Platforms –	Distributed Machine L	earn	ing -	– St	ages of ML
Workflow – Tools and	Fechnologies in ML Pipeline –	Distributed Computin	g M	odel	<b>s</b> −]	Distributed
Systems Architecture –	Ensemble Models – Challeng	es.				
UNIT II	FRAMEWORKS FOR SCA	ALLING UP			9	
Apache Spark Architec	ture – PySpark – MapReduce	e for Massively Parall	el Le	earn	ing	– Uniformly Fine-
Grained Data-Parallel G	Computing – GP-GPU.					
UNIT III	LEARNING ALGORITHM	IS IIII			9	)
PSVM: Parallel Suppo	rt Vector Machines with Incom	mplete Cholesky Fact	oriza	atior	1 - I	PSVM Algorithm -
Massive SVM Parallel	ization Using Hardware Acce	lerators - SMO Algori	thm	- La	arge	-Scale Learning to
Rank Using Boosted D	ecision Trees - LambdaMAR	T - Large-Scale Spectr	al C	luste	ering	g with MapReduce
and MPI.						
UNIT IV	ALTERNATIVE LEARNIN	NG			9	
Parallel Online Learnin	ng - Limits Due to Bandwidt	h and Latency - Paral	leliz	atio	n St	rategies - Delayed
Update Analysis - Para	llel Learning Algorithms - Glo	bal Update Rules - Di	strib	uted	l Tra	Insfer Learning via
Cooperative Matrix Fac	ctorization - Distributed Coalit	ional Learning - Exten	sion	of I	DisC	Co to Classification
Tasks - Parallel Large-S	Scale Feature Selection.					
UNIT V	APPLICATIONS				9	)
Large-Scale Learning for	or Vision with GPUs - Standard	d Pipeline – GPUs – Ap	proa	ich -	Fea	ature Learning with
Deep Belief Networks -	Mining Tree-Structured Data of	on Multicore Systems -	Mul	tico	re C	hallenge - Memory
Optimizations - Adaptiv	ve Parallelization - Empirical l	Evaluation.				-
				Т	OT	AL: 45 PERIODS

#### **OUTCOMES:**

#### At the end of this course, the students will be able to:

- **CO1**: Discuss the basics of how distributed computing is applied in scaling up machine learning process.
- **CO2**: Use scalable machine learning frameworks for parallel learning.
- CO3: Apply parallel Machine Learning Algorithms that can scale up.
- **CO4**: Distinguish traditional ML algorithms and Scalable ML algorithms.
- CO5: Discuss alternative learning for scalability.

CO6: Solve Large-scale real-world problems using GPUs and Multi-core systems.

#### **TEXT BOOKS:**

- 1. Ron Bekkerman, Mikhail Bilenko and John Langford, Scaling Up Machine Learning: Parallel and Distributed Approaches, Cambridge University Press, 2012.
- 2. Adi Polak, Scaling Machine Learning with Spark, O'Reilly Media, 2023.

- 1. J. Joshua Thomas, S. Harini, V. Pattabiraman, Scalable and Distributed Machine Learning and Deep Learning Patterns (Advances in Computational Intelligence and Robotics), IGI Global, 2023.
- 2. Bastiaan Sjardin, Luca Massaron, Alberto Boschetti, Large Scale Machine Learning with Python, Packt Publications, 2016.

22 A MQ14	OPTIMIZATION METHODS IN MACHINE LEADNING	L	Т	Р	С
22AN1714	OF TIMIZATION METHODS IN MACHINE LEARNING	3	0	0	3
<b>OBJECTIVES:</b>					
To unders	tand the basics of different Submodular functions and Associated Ploy	hec	lra.		
To discuss	s Submodularity and its Applications.				
• To analyz	e the various methods of Non-Smooth Convex Optimizations.				
• To analyz	e the various Separable Optimization Problems.				
• To discuss	s the various Submodular minimization methods and optimizations.				
UNIT I	INTRODUCTION				9
Introduction – De	finition – Submodularity – Associated Polyhedra – Polymatroids – Lo	vas	z Ez	xten	sion –
Definition – Gree	dy Algorithm – Links between submodularity and convexity.				
Properties of As	sociated Polyhedra: Support functions – Facial Structure – Positive	e an	d S	ym	metric
submodular Polyl	nedra.				
UNIT II	SUBMODULARITY				9
Convex and Co	ncave closures of set functions - Structured Sparsity - Conve	x F	Rela	xati	on of
Combinatorial Pe	enalty $-l_q$ relaxations of submodular penalties $-$ Shaping level sets	– F	Exar	nple	es and
Applications of S	Submodularity – Cardinality based functions – Cut functions – Set C	love	ers -	– Fl	ows –
Entropies – Spect	ral functions of submatrices – Best Subset Selection – Matroids.				
UNIT III	NON-SMOOTH CONVEX OPTIMIZATION				9
Projected Subgrad	dient descent – Ellipsoid Method – Kelly's Method – Analytic Centre	Cu	tting	g pla	anes –
Mirror descent/co	onditional gradient – Bundle and Simplicial Methods – Proximal Me	etho	ds -	- Si	mplex
algorithm for Li	near Programming – Active Set Method for Quadratic Programmi	ng	- A	Activ	ve Set
Algorithms for L	east-squares Problems.				
UNIT IV	SEPARABLE OPTIMIZATION PROBLEMS				9
Analysis: Optim	ality conditions for base polyhedral – Equivalence with subn	nodi	ular	fu	nction
Minimization – Q	Quadratic Optimization Problems – Separable problems on other polyh	edra	<b>1</b> .		_
Algorithms: Divi	ide-and Conquer algorithm for proximal problems – Iterative alg	orit	hms	-	Exact
minimization-Ap	proximate minimization.				0
UNITV	SUBMODULAR MINIMIZATION AND OPTIMIZATION	<u> </u>			9
Minimizers of Su	bmodular Functions – Combinatorial Algorithms – Minimizing Symm	etric	c po	sim	odular
runctions – Ellipsoid method – Simplex method for Submodular function minimization – Analytic centre					
cutting planes -	Minimum norm point algorithm – Approximate minimization	thre	oug	h c	onvex

optimization – Special Structure. Maximization with cardinality constraints – Submodular function minimization.

TOTAL: 45 PERIODS

#### **OUTCOMES:**

#### At the end of this course, the students will be able to:

- **CO1**: Understand the basics of different Submodular functions and Associated Ployhedra.
- **CO2**: Discuss Submodularity and its Applications.
- CO3: Analyze the various methods of Non-Smooth Convex Optimizations.
- **CO4**: Analyze the various Separable Optimization Problems.
- **CO5**: Discuss the various Submodular minimization methods and optimizations.

CO6: Apply various optimization methods to solve real-world problem in machine learning.

#### **TEXT BOOKS:**

1. Francis Bach, "Learning with Submodular Functions: A Convex Optimization Perspective", Foundations and Trends in Machine Learning, Now Publishers Inc., 2013.

#### **REFERENCES:**

- 1. A. Beck, "First-Order Methods in Optimization", MOS-SIAM Series on Optimization, 2017.
- 2. S. Bubeck, "Convex Optimization: Algorithms and Complexity, Foundations and Trends in Optimization", 2015.
- 3. Stephen Boyd, Lieven Vandenberghe, Convex Optimization, Cambridge University Press, Seventh Edition, 2009.
- 4. Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright, Optimization for Machine Learning, The MIT Press, 2012.

#### HONOURS VERTICAL – INTELLIGENT HEALTHCARE

22AM915	AI AND ML FOR HEALTHCARE	P C
ODIECTIVES		23
• To gain a	a deep insight into the key concepts of AI and Big data for healthcare.	
• To famil	iarize the principles of drug discovery and molecular modeling.	
To learn	the various techniques of machine intelligence for Cancer prediction.	
<ul> <li>To explo</li> </ul>	ore the recent trends in medical imaging.	
To under	rstand the Remote patient monitoring and AI assisted surgery techniques.	
UNIT I	CURRENT HEALTHCARE, BIG DATA, AND MACHINE	6+6
	LEARNING	
Current healthca	are practice- Value-based treatments and healthcare services- Increasing data ve	olumes
in healthcare – A	Analytics of healthcare data – The new age of healthcare- Precision medicine- Analytics	rtificial
intelligence and	medical visualization- Intelligent personal health records-	
Robotics and a	rtificial intelligence-powered devices- Ambient assisted living- Success factor	ors for
artificial intellig	ence in healthcare	
List of Lab Exe	ercises:	
1. Perform	Diagnostic Analytics for a medical data set	
2. Perform I	Prescriptive Analytics for a medical data set	
UNIT II	DRUG DISCOVERY AND MOLECULAR MODELING	6+6
Introduction - T	he scope of artificial intelligence in drug discovery- Types of machine learning in	n
artificial intellig	ence- Molecular modeling and databases in AI for drug molecules- ML methods	in
molecular mode	ling- Drug characterization- Drug design for neuroreceptors using ANN techniqu	ies-
Use of deep lear	ning in drug design	
List of Lab Exe	ercises:	
1. Perform dru	g discovery Analytics using pharmaceutical data set	
2. Perform Mol	ecular Modeling Analytics using Molecular Modeling DataBase	

UNIT III CANCER DIAGNOSTICS AND TREATMENT DECISIONS	6+6				
Background- AI, ML, and deep learning in cancer- Determine cancer susceptibility- Enhance	ed cancer				
diagnosis and staging- Predict cancer treatment response- Predict cancer recurrence and	survival-				
Personalized cancer pharmacotherapy					
List of Lab Exercises:					
1. Perform Cancer Detection Analytics using a medical data set.					
2. Perform Cancer Treatment Decision Analytics using a medical data set.					
UNIT IV ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGING	6+6				
Introduction – AI in radiology/medical imaging – overcoming the hurdles - X-rays and AI in	medical				
imaging - Ultrasound and AI in medical imaging- Application of AI in medical imagir	ig - The				
development of AI in medical devices - Limitations of AI in medical devices - The future fronti	ers of AI				
in medical devices					
List of Lab Exercises:					
1. Perform Xray Image Analysis using a medical data set.					
2. Perform Ultrasound Analysis using a medical data set.					
UNIT V REMOTE PATIENT MONITORING USING AI	6+6				
Introduction - Deploying patient monitoring - The role of AI in remote patient monitoring -					
Diabetes prediction and monitoring using AI - Cardiac monitoring using AI - Neural					
applications and remote patient monitoring - Artificial intelligence assisted surgery- Preoperati	ve				
- Intraoperative - Postoperative					
List of Lab Exercises:					
1. Develop a IOT based Remote Patient Monitoring system Project					
TOTAL: 30+30=60 P	ERIODS				
OUTCOMES:					
At the end of this course, the students will be able to:					
<b>CO1</b> : Elaborate the key concepts of AI and Big data for healthcare.					
<b>CO2</b> : Illustrate the principles of drug discovery and molecular modeling.					
CO3: Implement various techniques of machine intelligence for Healthcare applications.					
CO4: Identify the recent trends in medical imaging.					
<b>CO5</b> : Understand the Remote patient monitoring system.					
<b>CO6</b> : Apply various algorithms of AI and ML to solve Healthcare problems.					
TEXT BOOKS:					
1. Adam Bohr, Kaveh Memarzadeh, Artificial Intelligence in Healthcare, Academic Press	is an				
imprint of Elsevier, 2020.					
REFERENCES:					
1. Arjun Panesar, Machine Learning and AI for Healthcare: Big Data for Improved Health	ı				
Outcomes, APress, 2019.					
2. Rangaraj M. Rangayyan, Biomedical Image Analysis, 2004.					
3. Ranjay Krishna, "Computer Vision: Foundations and Applications", Standford Univers	ity, 2017.				
4. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer 2011.	•				
5. S.N. Sivanandam, S.N. Deepa, Principles of Soft Computing, 3rd Edition, Wiley, 2018.					
LIST OF EQUIPMENTS:					
Systems with Anaconda, Jupyter Notebook, Python					
Systems with reflected, support roteobook, i futon					

22AM916	MEDICAL IMACE ANALVSIS	L	T P 0 0	Р	С		
	MEDICAL IMAGE ANAL I SIS	3		3			
OBJECT	'IVES:						
The Cour	The Course will enable learners to:						
• 1	Inderstand of various medical imaging modalities						

- Develop solutions by preprocessing medical images, implementing machine learning and deep learning algorithms.
- Examine the ethical implications and societal impact of deploying machine learning models in healthcare.
- Elaborate on recent advances and research trends in machine intelligence for medical image analysis.

#### UNIT I INTRODUCTION TO MEDICAL IMAGING

Overview of medical imaging modalities -MRI, CT, X-ray, Ultrasound-Basics of image acquisition, processing, and visualization in medical imaging-Challenges and importance of medical image analysis-Introduction to common medical imaging datasets.

#### **FUNDAMENTALS OF MACHINE LEARNING** UNIT II

Introduction to machine learning concepts-Supervised, unsupervised, and semi-supervised learning-Feature extraction and feature selection techniques-Evaluation metrics for machine learning models. 9

#### **DEEP LEARNING FUNDAMENTALS UNIT III**

Basics of artificial neural networks (ANNs)-Convolutional Neural Networks (CNNs) for image analysis-Recurrent Neural Networks (RNNs) for sequential data analysis-Transfer learning and pre-trained models.

#### UNIT IV MEDICAL IMAGE PREPROCESSING

Image preprocessing techniques specific to medical images -noise reduction, normalization-Segmentation techniques-thresholding, region growing-Registration and alignment of medical images-Data augmentation for medical image datasets

#### UNIT V **MEDICAL IMAGE ANALYSIS**

Classification of medical images using machine learning algorithms-Object detection and localization in medical images-Case studies and applications of machine learning in medical image analysis.

Overview of deep learning architectures for medical image analysis-Semantic segmentation for medical images-Generative models for medical image synthesis-Ethical considerations and challenges in deploying deep learning models in healthcare.

#### **TOTAL: 45 PERIODS**

9

9

#### **OUTCOMES:**

Upon completion of the course, the students will be able to:

- **CO1:** Demonstrate a comprehensive understanding of various medical imaging modalities.
- **CO2:** Apply machine learning and deep learning techniques.
- **CO3:** Develop solutions by preprocessing medical images, implementing machine learning and deep learning algorithms.
- **CO4:** Understand the ethical considerations and regulatory requirements associated with deploying machine intelligence models in healthcare settings.

**CO5:** Elaborate on recent advances and research trends in machine intelligence for medical image analysis.

CO6: Illustrate the applications of ML and DL in medical image analysis.

#### **TEXT BOOKS:**

- 1. Le Lu, Yefeng Zheng, Gustavo Carneiro, Lin Yang, Deep Learning and Convolutional Neural Networks for Medical Image Computing Precision Medicine, High Performance and Large-Scale Dataset, Springer, 2017.
- 2. Atam P. Dhawan, "Medical Image Analysis", Wiley Publications, 2010.

- Ton J. Cleophas and Aeilko H. Zwinderman, Machine Learning in Medicine A Complete 1. Overview", Springer, 2015.
- 2. Nadine Barrie Smith and Andrew Webb, "Introduction to Medical Imaging: Physics, Engineering and Clinical Applications", Cambridge University Press, 2010.

	I.	Т	Р	С	
22AM917	CLINICAL DATA SCIENCE	3	0	0	3
<b>OBJECTIVES:</b>		5	U	U	
<ul> <li>Discuss standards to generate clinical data from electronic medical records.</li> <li>Elaborate various Modelling methods on Clinical Data.</li> <li>Illustrate methods to perform clinical data analysis using various data analysis techniques.</li> <li>Interpret clinical data analysis to support decision making.</li> <li>Apply statistics to improve the quality of decision making.</li> <li>Develop applications using Clinical Data.</li> </ul>					
UNIT I	INTRODUCTION			9	)
Data Sources – E	lectronic Medical Records – Laboratory Information Management Syste	ems	- G	DPI	R –
Data Types – Dat	a Standards – Big Clinical Data – Data Landscape – Standardizing Clin	ical	Dat	a.	
UNIT II	CLINICAL DATA TO MODELS			9	)
Preparing Data fo – Time-Domain H	r Predictive Modelling – Designs for Model Development – Sample size Processing – Frequency-Domain Processing – Prediction Modelling Me	$-\mathbf{N}$ thod	fissi lolos	ng I gv.	Data
UNIT III	CLINICAL DATA ANALYSIS			9	)
Clinical Trials – Clinical Tri	Classifications – Discrete Data Analysis – Failure-time Data Analysis –	Oua	antit	ativ	e
Data Analysis – N	Aultiplicity Analysis.				
UNIT IV	MEDICAL STATISTICS			9	)
Prove Prior Hypo	thesis – Improve the quality of research – Testing Randomness – Quali	ty cı	riteri	a.	
UNIT V	APPLICATIONS			9	)
Clinical Decision	Support System - Types - Challenges - Best Knowledge & Continuou	ıs In	npro	ven	nent
of Knowledge an	d CDSS Methods – Mobile CDSS – Care Process – Operational Excel	lenc	e –	Pro	cess
Mining - Socioted	chnical Systems & Leadership - Value-Based Health Care Supported by	Da	ta So	cien	ce.
	TOTAL	: 45	PE	RIC	DS
OUTCOMES:					
At the end of this	s course, the students will be able to:				
COI: General	te clinical data from electronic medical records.				
CO2: Ellipioy	various Modelling methods on Children Data.				
CO3.1 enorm	et clinical data to support decision making				
CO5 Apply s	statistics to improve the quality of decision making				
CO6: Develor	n applications using Clinical Data				
TEXT BOOKS:					
1. Pieter Ku	bben, Michel Dumontier, Andre Dekker, Fundamentals of Clinical	Da	ita S	Scie	nce,
Springer,	2019.				
2. Ton J. Cleophas, Aeilko H. Zwinderman, Understanding Clinical Data Analysis: Learning					
Statistical Principles from Published Clinical Research, Springer, 2016.					
<b>REFERENCES:</b>					
1. Aeilko H.	Zwinderman, Ton J. Cleophas, Machine Learning in Medicine - A Com	plete	e Ov	ervi	ew,
Springer,	2021.				

22AM918	DEEP LEARNING IN GENOMICS AND LIFE	L	Т	Р	С
	SCIENCES	3	0	0	3
<b>OBJECTIVES:</b>					

- Represent molecules and proteins as features for building machine learning models. •
- Emphasize how to extract interpretable, biological insights from deep learning models.

Analyze different models for Genomic applications.	
<ul> <li>Employ various deep learning tools for genomics.</li> </ul>	
Apply GANs for improving the models.	
UNIT I MACHINE LEARNING IN GENOMICS	9
Machine Learning for Genomics - Biopython – Genomics Data Analysis – Geno	me – Genome
sequencing – Sanger sequencing of nucleic acids – Evolution of next generation sequencing	ng – Analysis –
steps - Calculating GC content - nucleotide content- Dinucleotide content - Modelling -	- Motif finder.
Case Study: Sequence Analysis of Covid-19	_
UNIT II BIOPHYSICAL MACHINE LEARNING	9
Molecule - Molecular Bonds - Molecular Graphs - Molecular Conformations - Chirality	of Molecules -
Featurizing a Molecule - Graph Convolutions - Protein Structures - Protein Sequences	- Biophysical
Featurizations - Grid Featurization - Atomic Featurization.	
Case Study: Analyzing the PDBBind Dataset.	
UNIT III DEEP LEARNING FOR GENOMIC APPLICATIONS	9
DNNs for Genomics – workflow for Genomics – Protein structure predictions – Regulate	ory genomics –
Gene regulatory Networks – Single-cell RNA sequencing – Deep learning libraries for ge	enomics.
Case Study: Disease prediction	
UNIT IV CNN AND RNN FOR GENOMICS	9
Transfer Learning – CNNs for Genomics – Applications – Deep Bind – DeepInsight –	DeepChrome –
Deep variant – Applications and use cases of RNNs in Genomics – DeepNano – ProLa	nGo – DanQ –
Autoencoders for genomics – Gene expression.	autoencoders
UNIT V MODEL IMPROVEMENT	<b>Q</b>
GANs for Improving Models – Difference between Discriminative and Generative Mode	ls – Challenges
- synthetic data - Applications - Analysis of ScRNA-Seq data - Generation of DNA.	
Case Study: Personalized Medicine	
TOTAL:	
OUTCOMES	45 PERIODS
	45 PERIODS
At the end of this course, the students will be able to:	45 PERIODS
At the end of this course, the students will be able to: CO1: Represent molecules and proteins as features for building machine learning models	45 PERIODS
At the end of this course, the students will be able to: CO1: Represent molecules and proteins as features for building machine learning models CO2: Extract interpretable, biological insights from deep learning models.	<b>45 PERIODS</b>
At the end of this course, the students will be able to: CO1: Represent molecules and proteins as features for building machine learning models CO2: Extract interpretable, biological insights from deep learning models. CO3: Illustrate the applications of deep learning in genomics.	45 PERIODS
At the end of this course, the students will be able to: CO1: Represent molecules and proteins as features for building machine learning models CO2: Extract interpretable, biological insights from deep learning models. CO3: Illustrate the applications of deep learning in genomics. CO4: Analyze different models for Genomic applications.	<b>45 PERIODS</b>
At the end of this course, the students will be able to: CO1: Represent molecules and proteins as features for building machine learning models CO2: Extract interpretable, biological insights from deep learning models. CO3: Illustrate the applications of deep learning in genomics. CO4: Analyze different models for Genomic applications. CO5: Employ various deep learning tools for genomics.	45 PERIODS
At the end of this course, the students will be able to: CO1: Represent molecules and proteins as features for building machine learning models CO2: Extract interpretable, biological insights from deep learning models. CO3: Illustrate the applications of deep learning in genomics. CO4: Analyze different models for Genomic applications. CO5: Employ various deep learning tools for genomics. CO6: Apply GANs for improving the models.	<b>45 PERIODS</b>
At the end of this course, the students will be able to: CO1: Represent molecules and proteins as features for building machine learning models CO2: Extract interpretable, biological insights from deep learning models. CO3: Illustrate the applications of deep learning in genomics. CO4: Analyze different models for Genomic applications. CO5: Employ various deep learning tools for genomics. CO6: Apply GANs for improving the models. TEXT BOOKS: 1. Upendra Kumar Davisetty. Deep Learning for Genomics: Data driven approaches	45 PERIODS
At the end of this course, the students will be able to: CO1: Represent molecules and proteins as features for building machine learning models CO2: Extract interpretable, biological insights from deep learning models. CO3: Illustrate the applications of deep learning in genomics. CO4: Analyze different models for Genomic applications. CO5: Employ various deep learning tools for genomics. CO6: Apply GANs for improving the models. TEXT BOOKS: 1. Upendra Kumar Devisetty, Deep Learning for Genomics: Data-driven approaches applications in life sciences and biotechnology, packt Publications, 2022	45 PERIODS
<ul> <li>At the end of this course, the students will be able to:</li> <li>CO1: Represent molecules and proteins as features for building machine learning models</li> <li>CO2: Extract interpretable, biological insights from deep learning models.</li> <li>CO3: Illustrate the applications of deep learning in genomics.</li> <li>CO4: Analyze different models for Genomic applications.</li> <li>CO5: Employ various deep learning tools for genomics.</li> <li>CO6: Apply GANs for improving the models.</li> <li>TEXT BOOKS: <ol> <li>Upendra Kumar Devisetty, Deep Learning for Genomics: Data-driven approaches applications in life sciences and biotechnology, packt Publications, 2022.</li> </ol> </li> </ul>	• <b>45 PERIODS</b>
<ul> <li>At the end of this course, the students will be able to:</li> <li>CO1: Represent molecules and proteins as features for building machine learning models</li> <li>CO2: Extract interpretable, biological insights from deep learning models.</li> <li>CO3: Illustrate the applications of deep learning in genomics.</li> <li>CO4: Analyze different models for Genomic applications.</li> <li>CO5: Employ various deep learning tools for genomics.</li> <li>CO6: Apply GANs for improving the models.</li> <li>TEXT BOOKS: <ol> <li>Upendra Kumar Devisetty, Deep Learning for Genomics: Data-driven approaches applications in life sciences and biotechnology, packt Publications, 2022.</li> <li>Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, Deep Learning Sciences; Applying Deep Learning to Genomics. Microscopy, Drug Discovery &amp;</li> </ol> </li> </ul>	for genomics for the Life More.
<ul> <li>At the end of this course, the students will be able to:</li> <li>CO1: Represent molecules and proteins as features for building machine learning models</li> <li>CO2: Extract interpretable, biological insights from deep learning models.</li> <li>CO3: Illustrate the applications of deep learning in genomics.</li> <li>CO4: Analyze different models for Genomic applications.</li> <li>CO5: Employ various deep learning tools for genomics.</li> <li>CO6: Apply GANs for improving the models.</li> <li>TEXT BOOKS: <ol> <li>Upendra Kumar Devisetty, Deep Learning for Genomics: Data-driven approaches applications in life sciences and biotechnology, packt Publications, 2022.</li> <li>Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, Deep Learning Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery &amp; O'Reilly, 2019.</li> </ol> </li> </ul>	tor genomics for the Life More,
<ul> <li>At the end of this course, the students will be able to:</li> <li>CO1: Represent molecules and proteins as features for building machine learning models</li> <li>CO2: Extract interpretable, biological insights from deep learning models.</li> <li>CO3: Illustrate the applications of deep learning in genomics.</li> <li>CO4: Analyze different models for Genomic applications.</li> <li>CO5: Employ various deep learning tools for genomics.</li> <li>CO6: Apply GANs for improving the models.</li> <li>TEXT BOOKS: <ol> <li>Upendra Kumar Devisetty, Deep Learning for Genomics: Data-driven approaches applications in life sciences and biotechnology, packt Publications, 2022.</li> <li>Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, Deep Learning Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery &amp; O'Reilly, 2019.</li> </ol> </li> <li>REFERENCES:</li> </ul>	45 PERIODS
<ul> <li>At the end of this course, the students will be able to:</li> <li>CO1: Represent molecules and proteins as features for building machine learning models</li> <li>CO2: Extract interpretable, biological insights from deep learning models.</li> <li>CO3: Illustrate the applications of deep learning in genomics.</li> <li>CO4: Analyze different models for Genomic applications.</li> <li>CO5: Employ various deep learning tools for genomics.</li> <li>CO6: Apply GANs for improving the models.</li> <li>TEXT BOOKS: <ol> <li>Upendra Kumar Devisetty, Deep Learning for Genomics: Data-driven approaches applications in life sciences and biotechnology, packt Publications, 2022.</li> <li>Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, Deep Learning Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery &amp; O'Reilly, 2019.</li> </ol> </li> <li>REFERENCES: <ol> <li>Sanjiban Sekhar Roy, YH. Taguchi, Handbook of Machine Learning Applications</li> </ol></li></ul>	45 PERIODS
<ul> <li>At the end of this course, the students will be able to:</li> <li>CO1: Represent molecules and proteins as features for building machine learning models</li> <li>CO2: Extract interpretable, biological insights from deep learning models.</li> <li>CO3: Illustrate the applications of deep learning in genomics.</li> <li>CO4: Analyze different models for Genomic applications.</li> <li>CO5: Employ various deep learning tools for genomics.</li> <li>CO6: Apply GANs for improving the models.</li> <li>TEXT BOOKS: <ol> <li>Upendra Kumar Devisetty, Deep Learning for Genomics: Data-driven approaches applications in life sciences and biotechnology, packt Publications, 2022.</li> <li>Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, Deep Learning Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery &amp; O'Reilly, 2019.</li> </ol> </li> <li>REFERENCES: <ol> <li>Sanjiban Sekhar Roy, YH. Taguchi, Handbook of Machine Learning Applications, Springer, 2022.</li> </ol> </li> </ul>	45 PERIODS

22AM919	<b>BIO-INFORMATICS</b>	L T 3 0	P C 0 3
OBJECT	IVES:		0
The Course wi	ll enable learners to:		
Underst	and and develop models for Biological Data.		
Implem	ent image processing Techniques to Bioinformatics Data		
Implem	ent Micro Array analysis over Genome Expression.		
Underst	and the study of simbiology.		
Underst	and the pharmacokinetic modeling.		
Underst	and the working model of biological data in Matlab.		
UNIT I	INTRODUCTION		9
Overview of Bi	oinformatics Technologies – Structural Bioinformatics – Data Format	and Proc	cessing –
Secondary Res	ources and Applications – Role of Structural Bioinformatics – Biologi	cal Data	U
Integration Sys	tem		
UNIT II	BIOINFORMATICS TOOL BOX		9
Sequence Anal	ysis – NGS – Graph Theory – Gene Ontology – Importing Data and D	eploying.	
	BIOLOGICAL DATA ANALYSIS	1 5 0	9
Microarray Dat	a Analysis – Mass Spectrometry Data Analysis – Statistical Classifica	ntion of B ²	iological
Data	a rinarysis "Frass spectrometry Data rinarysis" Statistical Classified		lologicul
UNIT IV	IMAGE PROCESSING		9
Key Features of	of Image Processing – Importing and Exporting Images – Image File F	Formats a	nd Format
Conversion –	Pre and Post Processing Images – Spatial Transformations and Im	lage Regi	istration –
Microarray Ima	age Analysis.	0	
UNIT V	SYSTEMS BIOLOGY		9
Basics of Enzy	me Kinetics – Kinetic Laws – Modeling Biological System: Simulation	on, Sensit	ivity
Analysis, Parar	neter Estimation using Simbiology – Pharmacokinetic Modeling: Sim	ulation, P	opulation
Study – Model	of the Yeast Heterotrimeric G Protein Cycle and Glycoly.		
	ΤΟΤ	'AL: 45 F	PERIODS
OUTCO	MES:		
Upon comple	etion of the course, the students will be able to:		
CO1: D	evelop models for Biological Data.		
<b>CO2</b> : In	nplement image processing Techniques to Bioinformatics Data		
CO3: In	nplement Micro Array analysis over Genome Expression.		
CO4: U	nderstand the study of simbiology.		
CO5: II	lustrate the pharmacokinetic modeling.		
	laborate the working model of biological data in Matlab.		
1 Vi Din	Dianka Char (Ed) "Disinformation Tasky alogics". Springer Dublicat	iana 201	5
$\begin{array}{c c} 1. & Y1-P1ng \\ 2 & C & A1ta \end{array}$	g Phoebe Chen(Ed), Bioinformatics Technologies, Springer Publicat	1011S, 2013	3
2. G. Alte	rovitz, M. F. Ramoni, Systems Bioinformatics: An Engineering Case	-Based	
	CIT, Altech House, 2017.		
1 Michae	1 P. King Ning A. Mody "Numerical and Statistical Matheda for Dia	anginagi	ing:
	tions in MATLAR" Combridge University Pross 2011	cingineeri	ing.
2 John J	Semmlow "Bio signal and Medical Image Processing" CPC Press ?	2004	
2. John L. 3. Frank C	Honnensteadt Charles S Peskin "Modeling and Simulation in Med	icine and	Life
Science	s". Springer. 2010.		
4. C. Giba	s, Per Jambeck, "Developing bio- informatics computer skills". O'Rei	illy Media	a, 2001
4. C. Giba	s, Per Jambeck, "Developing bio- informatics computer skills", O'Rei	illy Media	a, 2001

22 A M 020	SMART AND INTERACTIVE HEALTHCARE	L	Т	P	С
22AW1920	TECHNOLOGIES	3	0	0	3
OBJECT	IVES:				
The Cour	se will enable learners to:				
• Illu	istrate the need and challenges of personalized healthcare.				
• Ex	plore the basic aspects of telehealth and telemedicine.				
• En	umerate mHealth evolution, regulation and applications.				
• De	monstrate the use of virtual reality and games in healthcare.				
• El:	borate the importance of IoT in healthcare through its applications.				
UNIT I	PERSONALISED HEALTHCARE				9
Personalization	of healthcare: the relationship between data, Digital technologies and	adva	ncea	d an	alytics
– Digital health	measures – Examples in digital health technologies in clinical rese	arch	- Ex	am	ples in
digital health teo	chnologies in care delivery pathway –Challenges in bringing digital he	alth t	echr	iolo	gies to
market –Challer	ges in adoption of digital health technologies.				0
UNIT II TELEHEALTH AND TELEMEDICINE					
Telemedicine y	versus telehealth – Definitions - Technology vs services – Telemec	licine	tec	hno	logical
requirements – '	Felehealth technological requirements – Distant health examples – Sn	nart m	nedic	cal s	shirts –
Haptic platforn	n – Overgrown cities – Rural health – Satellite telehealth – Te	eleme	dici	ne (	critical
technologies – F	resent challenges and benefits – Groundwork for a good telehealth ap	olicat	ion -	– Er	abling
telehealth for ex	isting medical application – Case study – Panic disorder – Case study –	- Diah	oetes	tele	ehealth
framework – Ca	se study – telehealth support for unit care – Medicolegal, ethical and re	egulat	orv	guid	delines
pertaining to tel	ehealth.	0	5	0	
UNIT III	M-HEALTH				9
Evolution from	telemedicine to m-Health – Initial and recent applications – Mobile	apps	for	mH	ealth -
Overview of m	Health apps – Regulation of mHealth apps - Cloud computing def	initio	n an	d se	elected
applications – c	losed loop solutions for personalized health interventions – Challens	ges in	sen	sor	design
and fabrication	- Challenges in mining and managing Big health data - Common	n mH	ealtł	ı an	d ICT
applications – E	vidence for mHealth impact –New frontiers in mHealth - Case study –	Sleep	) pro	bler	ms and
their implication	IS.		T		
UNIT IV	VIRTUAL REALITY AND GAMES FOR HEALTHCARE				9
Augmenting m	ental healthcare – Mobilizing services with virtual reality – Pain – An	xiety	and	pho	obias –
Stress managem	ent – Rehabilitation – Games for improving healthcare – Homo Ludens	-Lea	arniı	ng tl	nrough
challenges and f	un – Physical and functional fidelity – Games for health – Rehabilitation	on – C	Crow	/dso	ourcing
science – Gamir	g doctor – Games in official Medical programs – Games in skills train	ing ot	ıting	g ope	erating
room – Financia	l and Ethical aspects.				
UNIT V	IOT FOR HEALTHCARE				9
Concept of Io7	T-Based Healthcare Technology – Ambient intelligence in Healthc	are T	echr	iolo	gies –
Benefits – Chall	enges – Data handling and resource management – Security and Privae	≥y – Iı	ntero	oper	ability
– Stake holder o	collaboration and implementation – Technologies that enable IoT – H	ealth	care	– Iı	nternet
of Medical thing	gs – Applications of IoT in Healthcare – Benefits – Challenges.				
	TO	fAL:	45 I	PER	lods
OUTCOM	IES:				
Upon comple	tion of the course, the students will be able to:				
CO1: Illustrate	the need and challenges of personalized healthcare.				
<b>CO2:</b> Apply basic aspects of telehealth and telemedicine.					
CO3: Demonst	rate M-Health evolution, regulation and applications.				
CO4: Elaborate	e the use of virtual reality and games in healthcare.				
CO5: Elaborate	e the importance of IoT in healthcare through its applications.				
CO6: Apply sn	nart and interactive technologies for healthcare applications.				

#### **TEXT BOOKS:**

- 1. Halit Eren and John G Webster, "Telemedicine and Electronic Medicine", CRC Press, Taylor and Francis Group, New York, 2nd edition, 2016.
- 2. Shabbir Syed-Abdul, Xinxin Zhu, Luis Fernandez-Luque, "Digital Health: Mobile and Wearable Devices for participatory Health Applications", Elsevier, Cambridge, 2021.
- 3. Shashi Gogia, "Fundamentals of Telemedicine and Telehealth", Elsevier, Cambridge, USA, 1st Edition, 2020.

#### **REFERENCES:**

- 1. Homero Rivas and Katarzyna Wac, "Digital Health: Scaling Healthcare to the World", Health Informatics, Springer, Switzerland, 2018.
- 2. Nishu Gupta and Sara Paiva, "IoT and ICT for Healthcare Applications", Springer Innovations in Communication and Computing, 2020.

#### HONOURS VERTICAL – COMPUTATIONAL INTELLIGENCE

		L	Т	Р	С
22AM921	SOFT COMPUTING	3	0	0	3
OBJECTI The Course will	VES: l enable learners to:		1		
To learn	the basic concepts of Soft Computing.				
To under	stand artificial neural networks.				
To elabo	rate fuzzy systems.				
To illustr	ate Genetic Algorithms.				
• To discu	ss the various Hybrid algorithms and various Swarm Intelligence algorithms	orith	ms.		
UNIT I	INTRODUCTION				9
Neural Network	s - Application Scope of Neural Networks - Fuzzy Logic - Genetic	Algo	rith	m - I	Hybrid
Systems - Soft C	computing - Artificial Neural Network - Evolution of Neural Network	s - B	Basic	Mo	dels of
ANN – Weight	s – Bias – Threshold – Learning Rate – Momentum Factor – Vi	gilaı	nce	Para	meter-
McCulloch-Pitts	Neuron - Linear Separability - Hebb Network.				
UNIT II	ARTIFICIAL NEURAL NETWORKS				9
Perceptron Netw	orks - Adaptive Linear Neuron - Multiple Adaptive Linear Neurons	- Ba	ck-P	ropa	gation
Network - Radia	Basis Function Network - Pattern Association – Auto associative and	l Het	tero	asso	ciative
Memory Netwo	rks - Bidirectional Associative Memory (BAM) - Hopfield Networ	rks -	Fix	ed V	Veight
Competitive Net	s - Kohonen Self-Organizing Feature Maps.				
UNIT III	FUZZY SYSTEMS				9
Fuzzy Logic - C	Classical Sets (Crisp Sets) - Fuzzy Sets – Fuzzy Relation - Features	of th	ne M	lemb	ership
Functions - Fuzz	ification - Methods of Membership Value Assignments - Defuzzifica	tion	- La	mbd	a-Cuts
for Fuzzy Sets	(Alpha-Cuts) - Lambda-Cuts for Fuzzy Relations - Defuzzification	n Me	thoc	ls –	Fuzzy
Reasoning – Fuz	zy Inference Systems.				
UNIT IV	GENETIC ALGORITHMS				9
Biological Back	ground - Traditional Optimization and Search Techniques- Genetic Al	gori	thm	and S	Search
Space Simple	GA - General Genetic Algorithm - Operators - Stopping Condit	ion	- Co	onstr	aints -
Problem Solvin	g - The Schema Theorem- Classification - Holland Classifier	Syst	ems	- G	enetic
Programming - A	Advantages and Limitations- Applications.				
UNIT V	HYBRID SOFT COMPUTING AND SWARM INTELLIGENO ALGORITHMS	CE			9
Neuro-Fuzzy H	ybrid Systems - Genetic Neuro-Hybrid Systems - Genetic Fuzzy	Hyb	rid	and	Fuzzy
Genetic Hybrid	Systems - Simplified Fuzzy ARTMAP - Swarm Intelligence Algori	thm	s - A	Ant C	Colony
Optimization – A	Artificial Bee Colony – Particle Swarm Optimization – Firefly Algorithms	thm	•		
	ТОТ	' A T .	15	DED	IODE

#### **OUTCOMES:**

#### Upon completion of the course, the students will be able to:

- **CO1**: Elaborate the basic concepts of Soft Computing.
- **CO2**: Discuss Artificial neural networks and its applications.
- **CO3**: Apply Fuzzy logic to solve different applications.
- **CO4**: Solving problems using Genetic algorithms.
- **CO5**: Discuss various algorithms in Soft computing with its applications and limitations.

**CO6**: Use various algorithms in Soft computing to solve real-world problems.

#### **TEXT BOOKS:**

- 1. S. N. Sivanandam, S. N. Deepa, "Principles of Soft Computing", Wiley India Pvt. Ltd., 2nd Edition, 2019.
- 2. Adam Slovik, "Swarm Intelligence Algorithms: Modification and Applications", Taylor & Francis, First Edition, 2020.

#### **REFERENCES:**

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, Neuro-Fuzzy and Soft Computing, Prentice-Hall of India, 2002.
- 2. Kwang H. Lee, First course on Fuzzy Theory and Applications, Springer, 2005.
- 3. N.P. Padhy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxford University Press, 2015.
- 4. S. Rajasekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017.
- 5. NPTEL Courses:
  - a. Introduction To Soft Computing https://onlinecourses.nptel.ac.in/noc23_cs40/preview

#### 22AM922

#### **APPLIED AI and ML**

#### **OBJECTIVES:**

#### The Course will enable learners to:

- Understand and apply statistical methods to analyze and interpret data.
- Analyze and cluster genomic data using appropriate algorithms.
- Implement linear regression models to predict outcomes.
- Evaluate and improve model performance in binary classification tasks.
- Implement and train neural networks for various tasks.

#### UNIT I FOUNDATION OF DATA SCIENCE 9 Python for Data Science- NumPy & Pandas - Data Cleaning and Preparation- Statistics for Data Science- Types of Data- Levels of Measurement-Descriptive Statistics-Probability theory -Inferential Statistics-Advanced Visualization Techniques. Case Study: Cardio Good Fitness Data Analysis **Projects**:1. Food Hub Analysis 2. FIFO World Cup Analysis 3. Mobile Internet Usage Analysis MAKING SENSE OF UNSTRUCTURED DATA **UNIT II** 9 Introduction to Supervised & Unsupervised Learning- Handling Imbalanced Datasets-K-Means Clustering algorithm, Dimensionality Reduction techniques (PCA, t-SNE)-Visualizing High Dimensional Data-Comparsion of t-SNE with PCA-Combining PCA with t-SNE.

Case Study: Genomic Data Clustering

Project: Fantasy Sports Clustering Analysis

UNIT III REGRESSION AND PREDICTION

ΤP

L

3 0 0

С

3

Introduction to Linear Regression-OLS Method-Cost function and Optimization-Gradient Descent
Algorithm-Multiple Linear Regression-Elastic Net, Model Evaluation Techniques in solving Real
World Regression Problems.
Case Studies: 1. Hospital LOS Prediction
2.Big Mart Sales Prediction
Project: Super Kart Sales Prediction
UNIT IVCLASSIFICATION AND HYPOTHESIS TESTING9
Concepts of Classification algorithms- Model Performance- Application of Binary Classification-
Multi class classification-Multi label classification-Challenges in solving real world classification
problems.
Case Studies: 1.HR Employee Attrition Prediction
2. KC Roasters Coffee Quality Prediction
Projects: 1. Travel Package Purchase Prediction
2. Potential Customers Prediction
UNIT V DEEP LEARNING 9
Implementation of Neural Networks-Data Quality & Quantity-Data Augmentation- Hyper parameter
tuning-Computational Challenges -Transformer Networks-Transfer learning -solving real world
Neural Network based Problems.
Case Study: 1. Audio MNLST Digit Recognition,
2. Street View Housing Number Digit Recognition
Project: Food Image Classification
TOTAL: 45 PERIODS
OUTCOMES:
At the end of this course, the students will be able to:
<b>CO1:</b> Apply statistical techniques to interpret data and make data-driven decisions.
<b>CO2</b> : Utilize dimensionality reduction techniques such as PCA and t-SNE to simplify complex
datasets.
CO3: Apply regression techniques to real-world problems.
<b>CO4:</b> Perform hypothesis testing to varidate assumptions and make interences from data.
CO6: Implement the concentre of AL and ML to solve various applications
TEXT DOORS.
1 Soilest Dutt Subromanian Chandramouli Amit Kumar Das Machina Laarning Baarson
1. Saikai Duu, Suoramaman Chandramoun, Annit Kuniai Das, Machine Leanning, Pearson,
2019. 2 Ethem Alpendin Introduction to Machine Learning Adaptive Computation and Machine
2. Ethem Alpayum, introduction to Machine Learning, Adaptive Computation and Machine Learning Series, Third Edition, MIT Press, 2014
2 Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Cibson, O'Beilly Media
5. Deep Learning. A Fractitioner's Approach, Josh Fatterson, Adam Oloson, O Kenry Wedra,
A Deep Learning Jan Goodfellow Voshua Bengio Aaron Courville MIT Press 2017
5 Neural Networks and Deep Learning Michael Nielsen Determination Press 2015
<b>DEFEDENCES</b> .
1 Anuradha Sriniyasaraghayan, Vincy Joseph, Machine Learning, First Edition, Wiley, 2019
2 Peter Harrington "Machine Learning in Action" Manning Publications 2012
<ul> <li>3. Stephen Marsland "Machine Learning – An Algorithmic Perspective" Second Edition Chapman</li> </ul>
and Hall/CRC Machine Learning and Pattern Recognition Series 2014
4 Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013.
5. Christoph Molnar, "Interpretable Machine Learning - A Guide for Making Black Box Models
Explainable". Creative Commons License. 2020.
6. Deep Learning with TensorFlow: Explore neural networks with Python, Giancarlo Zaccone. Md. Rezaul
Karim, Ahmed Menshawy, Packt Publisher, 2017.
7. Deep Learning with Keras, Antonio Gulli, SujitPal, Packt Publishers, 2017.
8. Deep Learning with Python", Francois Chollet, Manning Publications, 2017
9. https://olympus.mygreatlearning.com/courses

22AM923	<b>RECOMMENDER SYSTEMS</b>	L 3	<u>Т</u> 0	P 0	<u>C</u> 3
<b>OBJECTIVE</b>	5:				
The Course w	ill enable learners to:				
• To und	erstand the foundations of the recommender system.				
• To lear	n about collaborative filtering.				
<ul> <li>To disc</li> </ul>	uss content-based recommendation systems.				
• To elab	orate on the evaluation paradigms for a recommendation system.				
To mak	e students design and implement a recommender system.				
UNIT I	INTRODUCTION TO RECOMMENDER SYSTEMS				9
Introduction - 1	Basic Models of Recommender Systems - Domain-Specific Challeng	ges in	Reco	omm	ender
Systems - Co	ld-Start Problem – Attack-Resistant Recommender Systems – Grou	p - N	lulti	-Crite	eria –
Active-Learnin	g – Privacy - Application Domains.				
UNIT II	COLLABORATIVE FILTERING				9
Neighborhood-	Based Collaborative Filtering - Key Properties - Predicting Rati	ings -	- Cl	uster	ing -
Dimensionality	Reduction - A Regression Modeling - Graph Models – Model-	based	Col	labo	rative
Filtering - De	ecision and Regression Trees - Rule-Based Collaborative Filter	ing -	Nai	ve ]	Baves
Collaborative I	Filtering – Latent Factor Models.	0			5
UNIT III	CONTENT-BASED RECOMMENDATION				9
Basic Compon	ents of Content-Based Systems - Preprocessing and Feature Extract	ion -	Lear	ming	User
Profiles and Fi	Itering - Content-Based Versus Collaborative Recommendations - I	Ising	Cont	ent-l	Based
Models for Col	llaborative Filtering.	5	Com	.0110 1	Jubeu
UNIT IV	DESIGN EVALUATION				9
<b>Evaluating</b> Par	adigms – General Goals of Evaluation Design-Design Issues in Offlir	ie Rec	comr	nend	er
Evaluation-Ac	curacy Metrics in Offline Evaluation-Limitations of Evaluation Measure	ures.			
UNIT V	TYPES OF RECOMMENDATION SYSTEMS				9
Content-based	Recommender Systems – Basic Components – Constraint-based Rec	comm	ende	r Sy	stems
- Context-sens	itive Recommender Systems – Social and Trust-Centric Recommender	er Sys	tems	5.	
	ΤΟ	TAL:	45 I	PER	ODS
OUTCO	MES:				
Upon complet	ion of the course, the students will be able to:				
CO1: Elaborat	te the foundations of the recommender system.				
CO2: Use coll	aborative filtering to design recommendation systems.				
CO3: Discuss	content-based recommendation systems.				
<b>CO4</b> : Elaborate on the evaluation paradigms for a recommendation system.					
COS. Use appropriate type of recommendation systems to solve real-world problems.					
TEXT POOK					
1 Charu (	D. 7 Aggarwal Recommender Systems: The Taythook Springer 2016				
2 Iannach	D Zanker M FelFering A Friedrich G Recommender Systems	An In	trodu	ictio	n
2. Januari Cambri	dge University Press. First Edition. 2011.		u		,
REFERE	ENCES:				

- 1. Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Mining of massive datasets, 3rd edition, Cambridge University Press, 2020.
- 2. Ricci, F., Rokach, L. and Shapira, B., Introduction to recommender systems handbook. In Recommender systems handbook, Springer, 2011.
- 3. Manouselis N., Drachsler H., Verbert K., Duval E., Recommender Systems For Learning, Springer, First Edition, 2013.

		_				
22AM924	<b>KNOWLEDGE ENGINEERING</b>	$\frac{L}{3}$	Т 0	Р 0	<u>C</u> 3	
<b>OBJECTIVES:</b>		U	v	•	•	
• To unders	tand the basics of Knowledge Engineering.					
To discus	• To discuss reasoning under uncertainty.					
<ul> <li>To design</li> </ul>	and develop ontologies					
• To apply	reasoning with ontologies and rules					
• To appry 1	tand learning and rule learning					
					9	
Knowladga Dan	resonantion and Passoning Need for Logic First order logic Su	ntov	6	ome	ntice	
Dragmatics Impl	icit and Explicit Belief Expressing Knowledge Resolution P	rop	- 0 Deiti	onal		
Haginanes- inipi	rn clauses Procedural Control of Passoning	Topo	JSIU	onai	case -	
IIII Logic – 110.	REASONING LINDER LINCERTAINTV				0	
Introduction A	REASONING ONDER ONCERTAINT	1:+:-		C.,L	y via ativa	
Devesion view	Deliaf Eurotiona – Probabilistic reasoning: Enumerative Probability – Uno		:S —	Suc	thede	
Exidence based r	Bener Functions – Bacoman Probability – Fuzzy Probability – Uno		inity En	ine aina	uious -	
Evidence based r	easoning – Intelligent Agent – Mixed-Initiative Reasoning – Rhowig	suge	; Ell	gine	ering –	
	ONTOL OCIES – DESIGN AND DEVELOPMENT				0	
Concepts and I	onto Loonerolization Hierarchias Object Features De	fini	na	Foot		
Concepts and in Depresentation	Transitivity Inheritance Concepts as Feature Values Ontology	Mat	ng . ohin	reat	ules –	
Design and Devel	opment Methodologies Steps in Optology Development Domain	Una	laret	ig. and	ing and	
Concept Elicitation	Modelling based Ontology Specification	Unc	10151	anu	ing and	
UNIT IV	REASONING WITH ONTOLOGIES AND RULES	÷			9	
Production Syste	m Architecture – Complex Ontology-based Concepts – Reduction a	nd .	Svn	thes	is rules	
and the Inference	Engine – Evidence-based hypothesis analysis – Rule and Ontology M	late	hing	v - P	artially	
Learned Knowle	lge – Reasoning with Partially Learned Knowledge - Rules in Pro	oduc	tion	Sv	stems -	
Object-Oriented I	Representation - Structured Descriptions.			~).		
UNIT V	LEARNING AND RULE LEARNING				9	
Machine Learnin	g – Concepts – Generalization and Specialization Rules – Types –	Ind	lucti	ve c	concept	
learning from Ex	amples – Learning with an Incomplete Representation Language – F	orm	al d	efin	ition of	
Generalization.						
Modelling, Learn	ing and Problem Solving – Rule learning and Refinement – Overvie	w.				
0	TOTA	L:	45	PEI	RIODS	
<b>OUTCOMES:</b>						
At the end of thi	s course, the students will be able to:					
CO1: Elaborate	the basics of Knowledge Representation and Knowledge Engineering	g.				
CO2: Develop re	easoning under uncertainty.	-				
CO3: Design and	d develop ontologies.					
CO4: Implement ontology-based reasoning systems.						
CO5: Understan	d learning and rule learning.					
CO6: Integrating	knowledge representation and reasoning in intelligent systems.					
<b>TEXT BOOKS:</b>						

- 1. Ronald J. Brachman, Hector J. Levesque: Knowledge Representation and Reasoning, Morgan Kaufmann, 2004.
- 2. Gheorghe Tecuci, Dorin Marcu, Mihai Boicu, David A. Schum, Knowledge Engineering Building Cognitive Assistants for Evidence-based Reasoning, Cambridge University Press, First Edition, 2016.

#### **REFERENCES:**

- 1. Ela Kumar, Knowledge Engineering, I K International Publisher House, 2018.
- 2. John F. Sowa: Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks/Cole, Thomson Learning, 2000.
- 3. King, Knowledge Management and Organizational Learning, Springer, 2009.
- 4. Jay Liebowitz, Knowledge Management Learning from Knowledge Engineering, 1st Edition,2001.

		L	Т	P	С			
22AM925	COMPUTATIONAL NEUROSCIENCE	3	0	0	3			
OBJECTIVES	:							
To unde	rstand what nervous systems do and determine how they function.							
• To explore the computational principles governing various aspects of vision, sensory-motor								
control, learning, and memory.								
• To analyze neural models.								
To learn	to extract information through neural encoding and decoding.							
To invest	stigate models of synaptic plasticity and learning in the brain.							
UNIT I	NEURAL ENCODING				9			
Firing Rates an	d Spike Statistics: Introduction- Spike Trains and Firing Rates - What	Ma	kes	a N	euron			
Fire? Spike-Tra	in Statistics – The Neural Code							
Reverse Correla	ation and Visual Receptive Fields – Estimating Firing Rates Introduc	ctior	n to	the	Early			
Visual System	Reverse-Correlation Methods: Simple Cells Static Non linearities:	Cor	nple	ex C	ells -			
Receptive Field	s in the Retina and LGN Constructing Visual Receptive Fields							
UNIT II	NEURAL DECODING AND INFORMATION THEORY				9			
Discrimination	- Population Decoding - Spike-Train Decoding							
Information Th	eory: Entropy and Mutual Information - Information and Entropy	Ma	nxim	nizat	ion –			
Entropy and Inf	Formation for Spike Trains							
UNIT III	MODEL NEURONS				9			
Phase Plane Ar	alysis – I - Phase Plane Analysis – II - Analyzing HHE – Bifurcatio	ons -	01	ther	Point			
Models – Leve	els of Neuron Modeling-Conductance-Based Models – The Cable	Equ	atio	n- l	Multi-			
compartment m	odels Orono in the							
UNIT IV	NETWORK MODELS				9			
Firing Rate Mo	dels – Feedforward Networks – Recurrent Networks – Excitatory-Inhib	oitor	y N	etwo	orks –			
Stochastic Netw	vorks							
UNIT V	PLASTICITY				9			
Synaptic Transi	nission and Synaptic Strength - Ways of Modification of Synaptic St	reng	gth -	Ty	pes of			
Plasticity - Shore	rt Term Plasticity - Long Term Plasticity – Computational Implication	S						
TOTAL: 45 PERIODS								
<b>OUTCOMES:</b>								
At the end of this course, the students will be able to:								
CO1: Elabo	rate the fundamentals of neural encoding.							
CO2: Apply	v neural encoding techniques.							
CO3: Use I	nformation Theory to decode neural signals.							
<b>CO4</b> : Analyze and model the dynamics of neurons.								

**CO5**: Design and analyze neural networks.

CO6: Implement the concepts of synaptic plasticity.

#### **TEXT BOOKS:**

- 1. Dayan, Peter, and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press, 2005. ISBN: 9780262041997.
- 2. Paul Miller, An Introductory Course in Computational Neuroscience, MIT Press, 2018.

- 1. Signal and Systems, Alan V. Oppenheim, Alan S. Willsky, Syed Hamid Nawab Prentice Hall, 1997.
- 2. Methods in Neuronal Modeling, Second Edition From Ions to Networks, Edited by Christof Koch and Idan Segev, MIT Press
- 3. Ionic Channels of Excitable Membranes, Second Edition, Bertil Hille, Sinauer Associates Inc.,1992
- 4. NPTEL: Computational Neuroscience Course (nptel.ac.in)

22AM926	ALESSENTIALS	L	Т	P	С		
		3	0	0	3		
<b>OBJECTIVES:</b>							
The Cours	e will enable learners:						
<ul> <li>To famili</li> </ul>	• To familiarize the concepts and recent technologies in AI.						
• To use ge	• To use generative AI in building applications.						
<ul> <li>To learn to design inputs for AI tools by using prompt engineering.</li> </ul>							
• To use to	ols and frameworks in explainable AI.						
• To build	AI systems with the principles of responsible AI.						
• To unders	stand the basics of Quantum AI.						
UNIT I	GENERATIVE AI				9		
Introduction - Ty	pes of Generative AI models – GANs – VAE – Diffusion Models	s – I	DAL	L-E	2 model		
– Stability AI and	d Midjourney – Speech – Large Language Models – Language an	d In	telli	gen	ce – NLP		
- Word2Vec M	odel – Transformers – Dials – BERT – GPT Systems and C	hatC	<b>JPT</b>	- A1	uto Code		
Generation – Wo	rking – Copilot.						
UNIT II	PROMPT ENGINEERING				9		
Basics - In-Con	text Learning – In-Context Prompting – Techniques – Image	Pror	npti	ng -	- Prompt		
Hijacking – Chal	lenges.						
UNIT III	EXPLAINABLE AI				9		
Introduction – Pr	oposed AI Model - Proposed Architecture - XAI Methods and t	heir	cla	ssifi	cations –		
Forms of Explan	ation – Frameworks for Model Interpretability and Explanation –	Met	hod	s an	d Metrics		
for Explaining A	I Models – Evaluation measures and applications for Explainable	AI.					
UNIT IV	RESPONSIVE AI				9		
Ethical Decision	Making – Approaches to Ethical Reasoning by AI – Designing Ar	tific	ial I	Mor	al Agents		
- Ethical Deliber	ations - Levels of Ethical Behaviour - Ethical Status of AI Syste	ms -	- Go	over	nance for		
Responsible AI -	- Codes of Conduct – Inclusion and Diversity – AI and Society –	Suj	per-i	ntel	ligence –		
Responsible AI.							
UNIT V	QUANTUM ML				9		
Quantum ML - Grover search algorithm - Quantum RL - Quantum annealing - Quantum Neural							
Networks - Topographic representation - Quantum ML - Brain - Topographic basis maps -							
Topographic qub	it maps – conversions between representations – applications.						
TOTAL:45 PERIODS							

#### **OUTCOMES:**

#### At the end of this course, the students will be able to:

- **CO1:** Elaborate the concepts and recent technologies in AI.
- **CO2:** Apply generative AI in building applications.
- **CO3:** Design inputs for AI tools by using prompt engineering.
- CO4: Use tools and frameworks in explainable AI.
- **CO5:** Build AI systems with the principles of responsible AI.
- **CO6:** Understand the basics of Quantum AI.

#### **TEXT BOOKS:**

- 1. Tom Taulli, "Generative AI How Chatgpt and other AI Tools will Revolutionize Business", Apress, 2023.
- 2. Mayuri Mehta, Vasile Palade, Indranath Chatterjee, Explainable AI: Foundations, Methodologies and Applications, Springer, 2023.
- 3. Virginia Dignum, Responsible Artificial Intelligence, How to Develop and Use AI in a Responsible Way, Springer, 2019.
- 4. Siddhartha Bhattacharyya, Indrajit Pan, Ashish Mani, Sourav De, Elizabeth Behrman, Susanta Chakraborti, "Quantum Machine Learning", De Gruyter Frontiers in Computational Intelligence, 2020.

#### **REFERENCES:**

- 1. Ben Auffarth, Generative AI with Lang Chain, Packt Publishing, 2023.
- 2. Amit Bahree, Generative AI in Action, Manning Publication, First Edition, 2023.
- 3. Gabriele Gianini, Pierre-Edouard Portier, "Advances in Explainable Artificial Intelligence", MDPI, 2024.
- 4. Santanu Pattanayak, Quantum Machine Learning with Python Using Cirq from Google Research and IBM Qiskit, Apress, 2021.

#### **OPEN ELECTIVE (Offered to Other Departments by AIML)**

22 A MOO7		L	Τ	Р	С			
22AN1907	AI III BLOCK CHAIN	3	0	0	3			
OBJECTIVES:								
• To acquire knowledge in Blockchain Technologies.								
To understant	how block chain and AI can be used to innovate.							
• To elaborate	Cryptocurrencies and AI.							
To develop a	oplications using blockchain.							
To understant	the limitations and future scope of AI in Blockchain.							
UNIT I	INTRODUCTION TO BLOCKCHAIN			9	)			
Overview - Blockch	ain vs Distributed Ledger Technology vs Distributed Databas	es –	Pub	lic v	s private			
vs permissioned bloc	kchains – Privacy in blockchains – Blockchain platforms - H	yper	ledg	er –				
Hashgraph, Corda –	OTA - Consensus Algorithms – Building DApps with block	chai	n to	ols.				
UNIT II	<b>BLOCKCHAIN AND ARTIFICIAL INTELLIGENCE</b>			9	)			
Introduction to the A	I landscape - AI and Blockchain driven Databases - Centraliz	zed v	s D	istrił	outed			
data – Blockchain da	ta – Big data for AI analysis – Global databases – Data Mana	igem	ent i	n a l	DAO -			
Benefits of combinin	g blockchain and AI – Aicumen Technologies -Combining b	lock	chai	n and	d AI to			
humanize digital interactions.								
UNIT III	CRYPTOCURRENCY AND AI			9	)			
Bitcoins – Ethereum	- Role of AI in cryptocurrency – cryptocurrency trading – M	akin	g pri	ce				
predictions with AI – Market making – future of cryptocurrencies.								
UNIT IV	DEVELOPING BLOCKCHAIN PRODUCTS			9	)			

Development Life Cycle of a DIApp – Designing a DIApp – Developing a DIApp – Testing – Deploying – Monitoring – Implementing DIApps.

UNIT V LIMITATIONS AND FUTURE OF AI WITH BLOCKCHAIN

Technical Challenges – Business Model Challenges – Scandals and Public perception – Government Regulation – Privacy Challenges for Personal Records – Convergence of AI with Blockchain – Future – Enterprise.

#### **TOTAL: 45 PERIODS**

9

#### **OUTCOMES:**

#### At the end of this course, the students will be able to:

**CO1**: Acquire knowledge in Blockchain Technologies.

**CO2**: Understand how block chain and AI can be used to innovate.

CO3: Elaborate Cryptocurrencies and AI.

**CO4**: Develop applications using blockchain.

**CO5**: Understand the limitations and future scope of AI in Blockchain.

**CO6**: Elaborate the various applications of AI in Blockchain.

#### **TEXT BOOKS:**

- 1. Ganesh Prasad Kumble, Anantha Krishnan, "Practical Artificial Intelligence and Blockchain: A guide to converging blockchain and AI to build smart applications for new economies", Packt Publications, 2020.
- 2. Melanie Swan, "Block Chain: Blueprint for a New Economy", O'Reilly, 2015.

- 1. Daniel Drescher, "Block Chain Basics", Apress; 1st edition, 2017.
- 2. Salman Baset, Luc Desrosiers, Nitin Gaur, Petr Novotny, Anthony O'Dowd, Venkatraman Ramakrishna, "Hands-On Block Chain with Hyperledger: Building Decentralized Applications with Hyperledger Fabric and Composer", Import, 2018.

22AM921	AM921 SOFT COMPLITING		Τ	P	С			
	SOFTCOMPCTING	3	0	0	3			
<b>OBJECTIVES:</b>								
The Course will	l enable learners to:							
To learn	the basic concepts of Soft Computing.							
To under	stand artificial neural networks.							
• To apply	fuzzy systems to solve problems.							
To solve	problems using Genetic Algorithms.							
To discus	ss the various Hybrid algorithms and various Swarm Intelligence algo	orith	ms.					
UNIT I INTRODUCTION								
Neural Networks	s - Application Scope of Neural Networks - Fuzzy Logic - Genetic	Algo	rith	n - I	Iybrid			
Systems - Soft C	omputing - Artificial Neural Network - Evolution of Neural Network	s - B	asic	Mo	dels of			
ANN – Weights	s - Bias - Threshold - Learning Rate - Momentum Factor - Vi	gilaı	nce	Para	meter-			
McCulloch-Pitts	s Neuron - Linear Separability - Hebb Network.							
UNIT II	ARTIFICIAL NEURAL NETWORKS				9			
Perceptron Netw	orks - Adaptive Linear Neuron - Multiple Adaptive Linear Neurons	- Ba	ck-P	ropa	gation			
Network - Radia	l Basis Function Network - Pattern Association – Auto associative and	l Het	ero	asso	ciative			
Memory Networ	rks - Bidirectional Associative Memory (BAM) - Hopfield Networ	:ks -	Fix	ed V	Veight			
Competitive Nets - Kohonen Self-Organizing Feature Maps.								
UNIT III	FUZZY SYSTEMS				9			
Fuzzy Logic - C	Classical Sets (Crisp Sets) - Fuzzy Sets – Fuzzy Relation - Features	of th	ne M	lemb	ership			

Functions - Fuzzification - Methods of Membership Value Assignments - Defuzzification - Lambda-Cuts for Fuzzy Sets (Alpha-Cuts) - Lambda-Cuts for Fuzzy Relations - Defuzzification Methods – Fuzzy Reasoning – Fuzzy Inference Systems.

UNIT IV	GENETIC ALGORITHMS				9	
Biological Back	ground - Traditional Optimization and Search Techniques- Genetic Alg	orith	nm a	ind S	Search	
Space Simpl	e GA - General Genetic Algorithm - Operators - Stopping Condition	on -	Co	nstra	aints -	
Problem Solvir	g - The Schema Theorem- Classification - Holland Classifier S	yste	ms-	G	enetic	
Programming -	Advantages and Limitations- Applications.					
	HYBRID SOFT COMPUTING AND SWARM INTELLIGENC	E			0	
UNITV	ALGORITHMS				У	
Neuro-Fuzzy H	ybrid Systems - Genetic Neuro-Hybrid Systems - Genetic Fuzzy H	Iybr	id a	nd	Fuzzy	
Genetic Hybrid	Systems - Simplified Fuzzy ARTMAP - Swarm Intelligence Algorith	hms	- A	nt C	Colony	
Optimization –	Artificial Bee Colony – Particle Swarm Optimization – Firefly Algorith	hm.			-	
-	ΤΟΤΑ	<b>L</b> :	45 F	PER	IODS	
OUTCON	AES:					
Upon comple	tion of the course, the students will be able to:					
CO1: Elaborate	e the basic concepts of Soft Computing.					
CO2: Discuss	Artificial neural networks and its applications.					
CO3: Apply F	uzzy logic to solve different applications.					
CO4: Solving	problems using Genetic algorithms.					
CO5: Discuss	various algorithms in Soft computing with its applications and limi	tatic	ons.			
CO6: Use var	ous algorithms in Soft computing to solve real-world problems.					
TEXT BOOKS						
1. S. N. Si	vanandam, S. N. Deepa, "Principles of Soft Computing", Wiley India I	Pvt.	Ltd.	, 2n	d	
Edition,	2019.					
2. Adam S	lovik, "Swarm Intelligence Algorithms: Modification and Applications	", T	aylo	or &		
Francis,	First Edition, 2020.	,	5			
REFERE	NCES:					
1. Jvh-Shir	ng Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, Neuro-Fuzzy and	Sof	t C	omr	outing.	
Prentice	-Hall of India, 2002.		. 2	<b>r</b>		
2. Kwang	H. Lee, First course on Fuzzy Theory and Applications, Springer, 2005	5.				
3. N.P. Pac	lhy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxt	ford	Uni	vers	sity	
Press, 20					2	
4. S. Raias	ekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and C	Gene	etic			
Algorith	m, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017.					
5. NPTEL	Courses:					
a. Introduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23 cs40/preview						
22AM925	COMPUTATIONAL NEUROSCIENCE	L	Т	Р	C	

#### **OBJECTIVES:**

- To understand what nervous systems do and determine how they function.
- To explore the computational principles governing various aspects of vision, sensory-motor control, learning, and memory.

3 0 0

3

9

- To analyze neural models.
- To learn to extract information through neural encoding and decoding.
- To investigate models of synaptic plasticity and learning in the brain.

#### UNIT I NEURAL ENCODING

Firing Rates and Spike Statistics: Introduction- Spike Trains and Firing Rates - What Makes a Neuron

Fire? Spike-Train Statistics – The Neural Code	
Reverse Correlation and Visual Receptive Fields – Estimating Firing Rates Introduction t	to the Early
Visual System Reverse-Correlation Methods: Simple Cells Static Non linearities: Com	olex Cells -
Receptive Fields in the Retina and LGN Constructing Visual Receptive Fields	
UNIT II     NEURAL DECODING AND INFORMATION THEORY	9
Discrimination - Population Decoding - Spike-Train Decoding	
Information Theory: Entropy and Mutual Information – Information and Entropy Maxi	imization –
Entropy and Information for Spike Trains	
UNIT III MODEL NEURONS	9
Phase Plane Analysis – I - Phase Plane Analysis – II - Analyzing HHE – Bifurcations -	Other Point
Models - Levels of Neuron Modeling-Conductance-Based Models - The Cable Equat	ion- Multi-
compartment models	
UNIT IV NETWORK MODELS	9
Firing Rate Models – Feedforward Networks – Recurrent Networks – Excitatory-Inhibitory	Networks –
Stochastic Networks	
UNIT V PLASTICITY	9
Synaptic Transmission and Synaptic Strength - Ways of Modification of Synaptic Strength	n - Types of
Plasticity - Short Term Plasticity - Long Term Plasticity – Computational Implications	• •
TOTAL: 45	PERIODS
OUTCOMES:	
At the end of this course, the students will be able to:	
<b>CO1</b> : Elaborate the fundamentals of neural encoding.	
CO2: Apply neural encoding techniques.	
<b>CO3</b> : Use Information Theory to decode neural signals.	
<b>CO4</b> : Analyze and model the dynamics of neurons.	
CO5: Design and analyze neural networks.	
CO6: Implement the concepts of synaptic plasticity.	
TEXT BOOKS:	
3. Dayan, Peter, and L. F. Abbott, Theoretical Neuroscience: Computational and Mathe	ematical
Modeling of Neural Systems. Cambridge, MA: MIT Press, 2005. ISBN: 978026204	1997.
4. Paul Miller, An Introductory Course in Computational Neuroscience, MIT Press, 20	18.
REFERENCES:	
<ol> <li>Signal and Systems, Alan V. Oppenheim, Alan S. Willsky, Syed Hamid Nawab Prei 1997.</li> </ol>	ntice Hall,
6. Methods in Neuronal Modeling, Second Edition From Ions to Networks, Edited by Koch and Idan Segev, MIT Press	Christof
<ol> <li>Ionic Channels of Excitable Membranes, Second Edition, Bertil Hille, Sinauer Associated and 1992</li> </ol>	ciates
8 NPTEL : Computational Neuroscience - Course (notel ac in)	
o. IN TEL. Computational Neuroscience - Course (infer.ac.in)	

22AM919	22AM919 BIO-INFORMATICS		Т 0	P 0	C 3		
OBJECT	OBJECTIVES:						
The Course wi	ll enable learners to:						
Underst	• Understand and develop models for Biological Data.						
Impleme	Implement image processing Techniques to Bioinformatics Data						
Implement Micro Array analysis over Genome Expression.							
• Understand the study of simbiology.							
Underst	• Understand the pharmacokinetic modeling.						

• Unders	tand the working model of biological data in Matlab.	
UNIT I	INTRODUCTION	9
Overview of E	ioinformatics Technologies – Structural Bioinformatics – Data Format and Proces	sing –
Secondary Rea	sources and Applications – Role of Structural Bioinformatics – Biological Data	
Integration Sy	stem	
UNIT II	BIOINFORMATICS TOOL BOX	9
Sequence Ana	lysis – NGS – Graph Theory – Gene Ontology – Importing Data and Deploying.	
UNIT III	BIOLOGICAL DATA ANALYSIS	9
Microarray Da	ta Analysis – Mass Spectrometry Data Analysis – Statistical Classification of Biol	ogical
Data.		
<b>UNIT IV</b>	IMAGE PROCESSING	9
Key Features	of Image Processing - Importing and Exporting Images - Image File Formats and	Format
Conversion –	Pre and Post Processing Images - Spatial Transformations and Image Registre	ration –
Microarray Im	age Analysis.	
UNIT V	SYSTEMS BIOLOGY	9
Basics of Enz	yme Kinetics – Kinetic Laws – Modeling Biological System: Simulation, Sensitivi	ty
Analysis, Para	meter Estimation using Simbiology – Pharmacokinetic Modeling: Simulation, Pop	ulation
Study – Mode	of the Yeast Heterotrimeric G Protein Cycle and Glycoly.	
	TOTAL: 45 PE	RIODS
OUTCO	MES:	
Upon comp	letion of the course, the students will be able to:	
<b>CO1</b> : ]	Develop models for Biological Data.	
<b>CO2</b> : ]	mplement image processing Techniques to Bioinformatics Data	
<b>CO3</b> : ]	mplement Micro Array analysis over Genome Expression.	
<b>CO4</b> : 1	Understand the study of simbiology.	
<b>CO5</b> : ]	llustrate the pharmacokinetic modeling.	
<b>CO6</b> : ]	Elaborate the working model of biological data in Matlab.	
TEXT BOOK		
1. Yi-Pir	g Phoebe Chen(Ed),"Bioinformatics Technologies", Springer Publications, 2015	
2. G. Alt	erovitz, M. F. Ramoni, "Systems Bioinformatics: An Engineering Case-Based	
Approa	ach", Artech House, 2017.	
REFER	ENCES:	
1. Micha	el R. King, Nipa A. Mody, "Numerical and Statistical Methods for Bioengineering	:
Applic	ations in MATLAB", Cambridge University Press, 2011.	
2. John L	. Semmlow, "Bio signal and Medical Image Processing", CRC Press, 2004.	
3. Frank	C. Hoppensteadt, Charles S. Peskin, "Modeling and Simulation in Medicine and Li	fe
Scienc	es", Springer, 2010.	
4. C. Gib	as, Per Jambeck, "Developing bio- informatics computer skills", O'Reilly Media, 2	2001

22AM001 INTRODUCTION TO GENERATIVE		L 3	Т 0	P 0	C 3
<ul> <li>OBJECTIVES:</li> <li>To understa</li> <li>To build Ge</li> <li>To understa</li> <li>To use varie</li> <li>To compare</li> </ul>	and the basic concepts of Generative AI. enerative AI systems to generate images. and the concept used in Generative AI Models. ous Generative AI models. e and use the various Large Language Models.			<u> </u>	
• To understa	and the basics of Prompt Engineering.				

UNIT I	INTRODUCTION	9				
Generative Model	s – Image transformation – Challenges - Deep Neural Networks – Perceptro	on – back				
propagation – CN	N – RNN – Optimizer.					
UNIT II	IMAGE GENERATION	9				
Creating encoding	s of images – variational objective – Inverse Autoregressive flow – Importing	CIFAR –				
Creating the netwo	ork from TensorFlow 2.					
UNIT III	GENERATIVE ADVERSARIAL NETWORKS	9				
Generative Adver	sarial Networks – Vanilla GAN – Improved GANs – Progressive GAN – Cha	allenges –				
Paired style transf	er – Unpaired style transfer – Deepfakes – Modes of operation – key feature s	set – High				
level flow – Repla	cement – Re-enactment.					
UNIT IV	LARGE LANGUAGE MODELS	9				
Overview of LLM	ls - Transformers – GPT – Types of LLMs – Key concepts – other Transforme	ers – T5 –				
Generative Pre-Tr	aining Models – Multi-modal Models – DALL.E 2					
UNIT V	PROMPT ENGINEERING	9				
Basics – In-Conte	ext Learning - In-Context Prompting - Techniques - Image Prompting	– Prompt				
Hijacking – Challe	enges.					
	TOTAL: 45 P	ERIODS				
<b>OUTCOMES:</b>						
At the end of this	course, the students will be able to:					
<b>CO1</b> : Elabora	te the basic concepts of Generative AI.					
CO2: Build C	Generative AI systems to generate images.					
CO3: Apply t	the concepts used in Generative AI Models.					
CO4: Use var	nous Generative AI models.					
CO5: Compa	re and use the various Large Language Models.					
CO6: Analyze	e the basics of Prompt Engineering.					
TEXT BOOKS:						
1. Ben Auffa	rth, Generative AI with Lang Chain, Packt Publishing, 2023.					
2. Amit Banr	ee, Generative AI in Action, Manning Publication, First Edition, 2023.					
<b>KEFERENCES:</b>	ton Constitute Deep Learning and Edition O'Deilly Media 2022					
1. David Fost	and Maggia Engler. Introduction to Congretive AI Manning Publicat	tion First				
2. Nulla Dia Edition 20	111 and Maggle Engler, infoduction to Generative AI, Maining Tublicat	.1011, 1115t				
3 Valentina	Alto Modern Generative AI with ChatGPT and OpenAI Models Packt pub	lications				
2024	2024					
22AM002	FOUNDATIONS OF NATURAL LANGUAGE PROCESSING	P C				
		0 3				
<b>OBJECTIVES:</b>						
• To learn	the fundamentals of natural language processing					

- To discuss word level analysis.
- To discuss the different language models.
- To understand the significance of syntactic and semantic analysis.
- To learn discourse algorithms and various lexical resources.

UNIT I	INTRODUCTION	9						
Natural Language Processing - Ambiguities in NLP - Regular Expressions - Words - Corpora - Text								
Normalization, M	inimum Edit Distance.							
UNIT II	WORD LEVEL ANALYSIS	9						
Morphological Analysis - Morphological Parsing - Unsmoothed N-grams, Evaluating N-grams,								

Smoothing, Interpolation and Backoff – Word Classes, Part-of-Speech Tagging, Rule-based - HMM -Transformation-based tagging.

UNIT III	UNIT III LANGUAGE MODELS				9
Markov Chains -	Markov Chains - Hidden Markov Model - Forward Algorithm - Decoding: Viterbi Algorithm - Training				
HMMs – Maxim	um Entropy Models – Maximum Entropy Markov Models.				
UNIT IV	SYNTACTIC AND SEMANTIC ANALYSIS				10
Context-Free Gr	ammars - Grammar rules - Treebanks - Normal Forms for grammar -	– Fini	te-s	tate	– CFG
- Dependency G	rammar – Parsing with CFG – Search – Ambiguity - Syntax-Driven	Sema	intic	ana	lysis –
Semantic Augmo	entations - Semantic attachments – Unification based approaches to S	Sema	ntic	Ana	lysis –
Semantic Attach	ments – Integrating Semantic Analysis to Early Parser – WordNet.				
UNIT V	APPLICATIONS OF NLP				8
Information Extr	action - Question Answering and Summarization – Dialogue and Co	onver	satio	onal	Agent
- Machine Trans	lation.				
	TO	ΓAL:	45 ]	PER	RIODS
OUTCOMES:					
At the end of th	is course, the students will be able to:				
<b>CO1:</b> Elaborate	the fundamentals of natural language processing.				
CO2: Perform w	vord level analysis in NLP.				
CO3: Illustrate of	lifterent ML models for NLP.				
CO4: Analyze th	he syntax and semantics using various methods.				
CO5: Analyze to	ext at the word level.				
CO6: Apply NL	P to solve real-world problems.				
1 Deniel June	Shu Isuan II Martin "Succel and I success Duraning An Interd	las ati a		Mat	1
I. Daniel Jura	isky, James H. Martin, "Speech and Language Processing: An Introd		n to	Nat	ural
Edition 201	o computational Linguistics and Speech, Pearson Publicat	10n, 3	seco	na	
Edition, 201	<u>9</u>				
<b>KEFEKENCE</b>	S: Even Klain and Edward Lanan "Natural Language Dragossing with	Dr+1	,	, г:	nat
I. Sleven Bird Edition O'l	, Ewan Kiem and Edward Loper, Natural Language Processing with	1 Pyu	1011	, гп	rst
2 Breck Baldy	vin "Language Processing with Java and LingPine Cookbook" Atla	ntic I	ուր	iche	r
2. Dieck Daid 2015	whi, Language Processing with Java and Enigripe Cookoook , Ada		uu	15110	1,
3 Richard M	Reese "Natural Language Processing with Java" O'Reilly Media 20	015			
4 Nitin Indurl	the and Fred I Damerau "Handbook of Natural Language Processi	ino"	Seco	ond	
Edition Ch	apman and Hall/CRC Press 2010	<u>s</u> ,		JIIG	
5. Tanveer Sic	diqui, U.S. Tiwary, "Natural Language Processing and Information"	Retrie	eval	". O	xford
University I	Press, 2008.			, -	
22 4 1 4002	COCNITIVE SCIENCE AND ANALYTICS	L	Т	P	С
22AM003	COGNITIVE SCIENCE AND ANALY TICS	3	0	0	3
OBJECTIVE	S:				
To und	lerstand cognitive computing.				
To kno	w about design principles and NLP for Cognitive systems.				
• To dis	tinguish between Big Data and Cognitive computing.				
To dis	cuss implications of cognitive computing in business.				
To des	velop applications of cognitive computing				
UNITIF	OUNDATIONS OF COGNITIVE SCIENCE				9
Foundation of	Cognitive Computing: cognitive computing as a new generation- the		of	non	itive
systems- system	em cognitive- gaining insights from data- Artificial Intelligence as	the f	on	datio	on of
cognitive com	suting- understanding cognition	ine 1	Jun	aaaa	
UNIT II	ESIGN PRINCIPLES FOR COGNITIVE SYSTEMS AND NLF	) IN			9
	COGNITIVE SYSTEMS	1			-
Components of	f a cognitive system- building the corpus- bringing data into	cogni	tive	SVS	tem-
Components of a cognitive system- building the corpus- bringing data into cognitive system-					

machine learning- hypotheses generation and scoring- presentation and visualization services. Natural Language Processing in support of a Cognitive System: Role of NLP in a cognitive systemsemantic web- Applying Natural language technologies to Business problems. UNIT III **BIG DATA VS COGNITIVE COMPUTING** 9 Relationship between Big Data and Cognitive Computing: Dealing with human-generated datadefining big data- architectural foundation- analytical data warehouses- Hadoop- data in motion and streaming data- integration of big data with traditional data. THE BUSINESS IMPLICATIONS OF COGNITIVE COMPUTING UNIT IV Preparing for change- advantages of new disruptive models- knowledge meaning to businessdifference with a cognitive systems approach- meshing data together differently- using business knowledge to plan for the future- answering business questions in new ways- building business specific solutions- making cognitive computing a reality- cognitive application changing the market-IBM Watson as a cognitive system. UNIT V **APPLICATIONS OF COGNITIVE COMPUTING** 9 Build a cognitive health care application - Build a cognitive application on Smarter cities - Applicate Cognitive Computing principle in building a Government related application. **TOTAL: 45 PERIODS OUTCOMES:** At the end of this course, the students will be able to: **CO1:** Elaborate the concepts of cognitive science and computing. **CO2:** Design and Implementation of Cognitive Systems. **CO3:** Apply NLP in cognitive systems. **CO4:** Integrate Big Data and Cognitive computing. **CO5:** Discuss implications of cognitive computing in business. **CO6:** Develop various applications of cognitive computing. **TEXT BOOKS:** 1. Judith H Hurwitz, Marcia Kaufman, Adrian Bowles, "Cognitive computing and Big Data Analytics", Wiley, 2015. **REFERENCES:** 1. Vijay Raghvan, Venu Govindaraju, C.R. Rao, "Cognitive Computing: Theory and Applications", Elsevier publications, North Holland Publication, 1st Edition, 2016. 2. Mallick, Pradeep Kumar, Borah, Samarjeet, "Emerging Trends and Applications in Cognitive Computing", IGI Global Publishers, 2019.

அறிவே

भूमुमुम्



## R2022

## HONOURS DEGREE OFFERED BY DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

(For the Students admitted during 2022-2023 & 2023-2024)

# R2022 CURRICULUM OF B.TECH. (HONOURS) IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING WITH SPECIALIZATION IN SI. No NAME OF THE HONOURS DEGREE WITH SPECIALIZATION 1. Computational Intelligence

 2.
 Intelligent Healthcare

#### R2022 CURRICULUM OF B.TECH. (HONOURS) IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Additional 18 credits to be completed from the courses offered in any Professional Elective Vertical

#### **HONOURS VERTICALS:**

INTELLIGENT HEALTHCARE										
Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С		
1.	22AM915	AI and ML for Healthcare	PEC	4	2	0	2	3		
2.	22AM916	Medical Image Analysis	PEC	3	3	0	0	3		
3.	22AM917	Clinical Data Science	PEC	3	3	0	0	3		
4.	22AM918	Deep Learning in Genomics and Life Sciences	PEC	3	3	0	0	3		
5.	22AM919	Bio-Informatics	PEC	3	3	0	0	3		
6.	22AM920	Smart and Interactive Healthcare Technologies	PEC	3	3	0	0	3		
7.	22AM812	Capstone Project	PEC	12	0	0	12	6		

COMPUTATIONAL INTELLIGENCE										
Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С		
1.	22AM921	Soft Computing	PEC	3	3	0	0	3		
2.	22AM922	Applied AI and ML	PEC	3	3	0	0	3		
3.	22AM923	Recommender Systems	PEC	3	3	0	0	3		
4.	22AM924	Knowledge Engineering	PEC	3	3	0	0	3		
5.	22AM925	Computational Neuroscience	PEC	3	3	0	0	3		
6.	22AM926	AI Essentials	PEC	3	3	0	0	3		
7.	22AM812	Capstone Project	PEC	12	0	0	12	6		

#### HONOURS VERTICAL – INTELLIGENT HEALTHCARE

	T	ТРС				
22AM915	AI AND ML FOR HEALTHCARE	$   \begin{array}{c cccccccccccccccccccccccccccccccccc$				
OBJECTIVES:						
• To gain a deep insight into the key concepts of AI and Big data for healthcare.						
• To familiarize the principles of drug discovery and molecular modeling.						
<ul> <li>To learn the various techniques of machine intelligence for Cancer prediction</li> </ul>						
<ul> <li>To evalue the recent trends in medical imaging</li> </ul>						
<ul> <li>To understand the Remote patient monitoring and AI assisted surgery techniques</li> </ul>						
	CURRENT HEALTHCARE BIG DATA AND MACHINE	6⊥6				
	LEARNING	010				
Current healthcare practice- Value-based treatments and healthcare services- Increasing data volumes						
in healthcare – Analytics of healthcare data – The new age of healthcare- Precision medicine- Artificial						
intelligence and medical visualization- Intelligent personal health records-						
Robotics and artificial intelligence-powered devices- Ambient assisted living- Success factors for						
artificial intelligence in healthcare						
List of Lab Exercises:						
1. Perform	Diagnostic Analytics for a medical data set					
2. Perform F	Prescriptive Analytics for a medical data set					
UNIT II	DRUG DISCOVERY AND MOLECULAR MODELING	6+6				
Introduction - T	he scope of artificial intelligence in drug discovery- Types of machine learning	in				
artificial intellig	ence- Molecular modeling and databases in AI for drug molecules- ML method	ls in				
molecular mode	ling- Drug characterization- Drug design for neuroreceptors using ANN technic	jues-				
Use of deep lear	ning in drug design	1				
List of Lab Exe	rcises:					
1. Perform dru	g discovery Analytics using pharmaceutical data set					
2. Perform Mole	ecular Modeling Analytics using Molecular Modeling DataBase					
UNIT III	CANCER DIAGNOSTICS AND TREATMENT DECISIONS	6+6				
Background- AI	, ML, and deep learning in cancer- Determine cancer susceptibility- Enhanced	d cancer				
diagnosis and s	taging- Predict cancer treatment response- Predict cancer recurrence and s	survival-				
Personalized car	ncer pharmacotherapy					
List of Lab Exe	rcises:					
1. Perform Can	cer Detection Analytics using a medical data set.					
2. Perform Canc	er Treatment Decision Analytics using a medical data set.					
UNIT IV	ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGING	6+6				
Introduction – A	AI in radiology/medical imaging – overcoming the hurdles - X-rays and AI in	medical				
imaging - Ultrasound and AI in medical imaging- Application of AI in medical imaging - The						
development of AI in medical devices - Limitations of AI in medical devices - The future frontiers of AI						
in medical devices						
List of Lab Exercises:						
1. Perform	Xray Image Analysis using a medical data set.					
2. Perform U	Jltrasound Analysis using a medical data set.					
UNIT VREMOTE PATIENT MONITORING USING AI6+6						
Introduction - D	eploying patient monitoring - The role of AI in remote patient monitoring -					
Diabetes prediction and monitoring using AI - Cardiac monitoring using AI - Neural						
applications and remote patient monitoring - Artificial intelligence assisted surgery- Preoperative						
– Intraoperative - Postoperative						
List of Lab Exercises:						

List of Lab Exercises:

1. Develop a IOT based Remote Patient Monitoring system Project

#### TOTAL: 30+30=60 PERIODS

#### **OUTCOMES:**

At the end of this course, the students will be able to:

- CO1: Elaborate the key concepts of AI and Big data for healthcare.
- **CO2**: Illustrate the principles of drug discovery and molecular modeling.
- CO3: Implement various techniques of machine intelligence for Healthcare applications.
- CO4: Identify the recent trends in medical imaging.
- **CO5**: Understand the Remote patient monitoring system.
- CO6: Apply various algorithms of AI and ML to solve Healthcare problems.

#### **TEXT BOOKS:**

1. Adam Bohr, Kaveh Memarzadeh, Artificial Intelligence in Healthcare, Academic Press is an imprint of Elsevier, 2020.

#### **REFERENCES:**

- 1. Arjun Panesar ,Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes, APress, 2019.
- 2. Rangaraj M. Rangayyan, Biomedical Image Analysis, 2004.
- 3. Ranjay Krishna, "Computer Vision: Foundations and Applications", Standford University, 2017.
- 4. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer 2011.
- 5. S.N. Sivanandam, S.N. Deepa, Principles of Soft Computing, 3rd Edition, Wiley, 2018.

#### LIST OF EQUIPMENTS:

Systems with Anaconda, Jupyter Notebook, Python

22AM916	MEDICAL IMAGE ANALYSIS	L	Т	Р	С		
		3	0	0	3		
OBJECTIVES:							
The Course will enable learners to:							
• Understand of various medical imaging modalities.							
• Explore advanced deep learning techniques for medical image analysis.							
• Develop solutions by preprocessing medical images, implementing machine learning and							
deep learning algorithms.							
• Examine the ethical implications and societal impact of deploying machine learning models							
in healthcare.							
• E	• Elaborate on recent advances and research trends in machine intelligence for medical image						
a	nalysis.				U		
UNIT I	INTRODUCTION TO MEDICAL IMAGING				9		
Overview of medical imaging modalities -MRI, CT, X-ray, Ultrasound-Basics of image acquisition,							
processing, and visualization in medical imaging-Challenges and importance of medical image analysis-							
Introduction to common medical imaging datasets.							
TINITT II	EUNDAMENTALS OF MACHINE LEADNING						
	FUNDAMENTALS OF MACHINE LEARNING				9		
Introduction to	machine learning concepts-Supervised, unsupervised, and semi-s	superv	vised	l lea	9 rning-		
Introduction to Feature extraction	machine learning concepts-Supervised, unsupervised, and semi-section techniques-Evaluation metrics for machine learning techniques-Evaluation metrics for machi	superv earnin	visec g m	l lea odels	<b>9</b> rning- 3.		
Introduction to Feature extraction	machine learning concepts-Supervised, unsupervised, and semi-son and feature selection techniques-Evaluation metrics for machine learning <b>DEEP LEARNING FUNDAMENTALS</b>	superv earnin	viseo g m	l lea	9 urning- 3. 9		
Introduction to Feature extracti UNIT III Basics of artific	machine learning concepts-Supervised, unsupervised, and semi-section and feature selection techniques-Evaluation metrics for machine learning <b>DEEP LEARNING FUNDAMENTALS</b> tial neural networks (ANNs)-Convolutional Neural Networks (CNNs)	superv earnin ) for i	viseo g m mag	l lea odels	9 urning- 3. 9 alysis-		
Introduction to Feature extracti UNIT III Basics of artific Recurrent Neur	machine learning concepts-Supervised, unsupervised, and semi-son and feature selection techniques-Evaluation metrics for machine learning <b>DEEP LEARNING FUNDAMENTALS</b> tial neural networks (ANNs)-Convolutional Neural Networks (CNNs) al Networks (RNNs) for sequential data analysis-Transfer learning and	superv earnin ) for i 1 pre-1	viseo g m mag rain	1 lea odels e ans ed m	9 urning- 3. 9 alysis- 10dels.		
Introduction to Feature extraction UNIT III Basics of artific Recurrent Neur UNIT IV	machine learning concepts-Supervised, unsupervised, and semi-son and feature selection techniques-Evaluation metrics for machine learning <b>DEEP LEARNING FUNDAMENTALS</b> tial neural networks (ANNs)-Convolutional Neural Networks (CNNs) al Networks (RNNs) for sequential data analysis-Transfer learning and <b>MEDICAL IMAGE PREPROCESSING</b>	supervearnin ) for i d pre-1	viseo g m mag rain	l lea odels ge ans ed m	9 urning- 3. 9 alysis- nodels. 9		
Segmentation techniques-thresholding, region growing-Registration and alignment of medical images-							
---------------------------------------------------------------------------------------------------------							
Data augmentation for medical image datasets							
UNIT VMEDICAL IMAGE ANALYSIS9							
Classification of medical images using machine learning algorithms-Object detection and localization in							
medical images-Case studies and applications of machine learning in medical image analysis.							
Overview of deep learning architectures for medical image analysis-Semantic segmentation for medical							
images-Generative models for medical image synthesis-Ethical considerations and challenges in deploying							
deep learning models in healthcare.							
TOTAL: 45 PERIODS							
OUTCOMES:							
Upon completion of the course, the students will be able to:							
<b>CO1:</b> Demonstrate a comprehensive understanding of various medical imaging modalities.							
<b>CO2:</b> Apply machine learning and deep learning techniques.							
<b>CO3:</b> Develop solutions by preprocessing medical images, implementing machine learning and deep							
learning algorithms.							
<b>CO4:</b> Understand the ethical considerations and regulatory requirements associated with deploying							
machine intelligence models in healthcare settings.							
<b>CO5:</b> Elaborate on recent advances and research trends in machine intelligence for medical image							
analysis.							
<b>CO6:</b> Illustrate the applications of ML and DL in medical image analysis.							
TEXT BOOKS:							
1. Le Lu, Yefeng Zheng, Gustavo Carneiro, Lin Yang, Deep Learning and Convolutional Neural							
Networks for Medical Image Computing Precision Medicine, High Performance and Large-Scale							
Dataset, Springer, 2017.							
2. Atam P. Dhawan, "Medical Image Analysis", Wiley Publications, 2010.							
<b>REFERENCES:</b>							
1. Ton J. Cleophas and Aeilko H. Zwinderman, Machine Learning in Medicine - A Complete							
Overview", Springer, 2015.							

2. Nadine Barrie Smith and Andrew Webb, "Introduction to Medical Imaging: Physics, Engineering and Clinical Applications", Cambridge University Press, 2010.

M9	17
	M9

## CLINICAL DATA SCIENCE

 T
 P
 C

 0
 0
 3

L

3

## **OBJECTIVES:**

- Discuss standards to generate clinical data from electronic medical records.
- Elaborate various Modelling methods on Clinical Data.
- Illustrate methods to perform clinical data analysis using various data analysis techniques.
- Interpret clinical data analysis to support decision making.
- Apply statistics to improve the quality of decision making.
- Develop applications using Clinical Data.

UNIT I	INTRODUCTION	9		
Data Sources – E	lectronic Medical Records – Laboratory Information Management Systems - GD	PR –		
Data Types – Dat	a Standards – Big Clinical Data – Data Landscape – Standardizing Clinical Data.			
UNIT II	CLINICAL DATA TO MODELS	9		
Preparing Data for Predictive Modelling – Designs for Model Development – Sample size – Missing Data				
– Time-Domain F	Processing – Frequency-Domain Processing – Prediction Modelling Methodology	′ <b>.</b>		
UNIT III	CLINICAL DATA ANALYSIS	9		

Clinical Trials – Classifications – Discrete Data Analysis – Failure-time Data Analysis – Quantitative Data Analysis – Multiplicity Analysis.

UNIT IV MEDICAL STATISTICS

Prove Prior Hypothesis – Improve the quality of research – Testing Randomness – Quality criteria. UNIT V APPLICATIONS 9

Clinical Decision Support System – Types – Challenges - Best Knowledge & Continuous Improvement of Knowledge and CDSS Methods – Mobile CDSS – Care Process – Operational Excellence – Process Mining - Sociotechnical Systems & Leadership - Value-Based Health Care Supported by Data Science.

### TOTAL: 45 PERIODS

9

### **OUTCOMES:**

### At the end of this course, the students will be able to:

- CO1: Generate clinical data from electronic medical records.
- **CO2**: Employ various Modelling methods on Clinical Data.
- CO3: Perform clinical data analysis using various data analysis techniques.
- CO4: Interpret clinical data to support decision making.
- CO5: Apply statistics to improve the quality of decision making.

**CO6**: Develop applications using Clinical Data.

### **TEXT BOOKS:**

- 1. Pieter Kubben, Michel Dumontier, Andre Dekker, Fundamentals of Clinical Data Science, Springer, 2019.
- 2. Ton J. Cleophas, Aeilko H. Zwinderman, Understanding Clinical Data Analysis: Learning Statistical Principles from Published Clinical Research, Springer, 2016.

### **REFERENCES:**

1. Aeilko H. Zwinderman, Ton J. Cleophas, Machine Learning in Medicine - A Complete Overview, Springer, 2021.

ZZAMPTO       SCIENCES       3       0       0       3         OBJECTIVES:       • Represent molecules and proteins as features for building machine learning models.       • Emphasize how to extract interpretable, biological insights from deep learning models.       • Emphasize how to extract interpretable, biological insights from deep learning models.       • Illustrate the applications of deep learning in genomics.       • Analyze different models for Genomic applications.       • Employ various deep learning tools for genomics.       • Apply GANs for improving the models.         UNIT I       MACHINE LEARNING IN GENOMICS       9         Machine Learning for Genomics       • Biopython – Genomics Data Analysis – Genome – Genome sequencing – Sanger sequencing of nucleic acids – Evolution of next generation sequencing – Analysis –	22 A M018	DEEP LEARNING IN GENOMICS AND LIFE	L	Т	P	С			
OBJECTIVES:         • Represent molecules and proteins as features for building machine learning models.         • Emphasize how to extract interpretable, biological insights from deep learning models.         • Illustrate the applications of deep learning in genomics.         • Analyze different models for Genomic applications.         • Employ various deep learning tools for genomics.         • Apply GANs for improving the models.         VNIT I       MACHINE LEARNING IN GENOMICS         9         Machine Learning for Genomics       - Genome – Genome sequencing – Sanger sequencing of nucleic acids – Evolution of next generation sequencing – Analysis –	22AW1910	SCIENCES	3	0	0	3			
<ul> <li>Represent molecules and proteins as features for building machine learning models.</li> <li>Emphasize how to extract interpretable, biological insights from deep learning models.</li> <li>Illustrate the applications of deep learning in genomics.</li> <li>Analyze different models for Genomic applications.</li> <li>Employ various deep learning tools for genomics.</li> <li>Apply GANs for improving the models.</li> </ul> <b>UNIT I</b> MACHINE LEARNING IN GENOMICS <b>9</b> Machine Learning for Genomics - Biopython - Genomics Data Analysis - Genome - Genome sequencing - Sanger sequencing of nucleic acids - Evolution of next generation sequencing - Analysis -	OBJECTIVES:								
<ul> <li>Emphasize how to extract interpretable, biological insights from deep learning models.</li> <li>Illustrate the applications of deep learning in genomics.</li> <li>Analyze different models for Genomic applications.</li> <li>Employ various deep learning tools for genomics.</li> <li>Apply GANs for improving the models.</li> </ul> <b>UNIT I</b> MACHINE LEARNING IN GENOMICS 9 Machine Learning for Genomics - Biopython - Genomics Data Analysis - Genome - Genome sequencing - Sanger sequencing of nucleic acids - Evolution of next generation sequencing - Analysis -	• Represent	molecules and proteins as features for building machine learning	ng n	node	els.				
<ul> <li>Illustrate the applications of deep learning in genomics.</li> <li>Analyze different models for Genomic applications.</li> <li>Employ various deep learning tools for genomics.</li> <li>Apply GANs for improving the models.</li> </ul> UNIT I MACHINE LEARNING IN GENOMICS 9 Machine Learning for Genomics - Biopython - Genomics Data Analysis - Genome - Genome sequencing - Sanger sequencing of nucleic acids - Evolution of next generation sequencing - Analysis -	<ul> <li>Emphasize</li> </ul>	how to extract interpretable, biological insights from deep lear	rnin	g m	odel	ls.			
<ul> <li>Analyze different models for Genomic applications.</li> <li>Employ various deep learning tools for genomics.</li> <li>Apply GANs for improving the models.</li> </ul> UNIT I MACHINE LEARNING IN GENOMICS 9 Machine Learning for Genomics - Biopython - Genomics Data Analysis - Genome - Genome sequencing - Sanger sequencing of nucleic acids - Evolution of next generation sequencing - Analysis -	• Illustrate th	ne applications of deep learning in genomics.							
<ul> <li>Employ various deep learning tools for genomics.</li> <li>Apply GANs for improving the models.</li> <li>UNIT I MACHINE LEARNING IN GENOMICS 9</li> <li>Machine Learning for Genomics - Biopython - Genomics Data Analysis - Genome - Genome sequencing - Sanger sequencing of nucleic acids - Evolution of next generation sequencing - Analysis -</li> </ul>	<ul> <li>Analyze di</li> </ul>	fferent models for Genomic applications.							
Apply GANs for improving the models.     INIT I     MACHINE LEARNING IN GENOMICS     9 Machine Learning for Genomics - Biopython - Genomics Data Analysis - Genome - Genome sequencing - Sanger sequencing of nucleic acids - Evolution of next generation sequencing - Analysis -	<ul> <li>Employ va</li> </ul>	rious deep learning tools for genomics.							
UNIT I       MACHINE LEARNING IN GENOMICS       9         Machine Learning for Genomics       - Biopython – Genomics Data Analysis – Genome – Genome sequencing – Sanger sequencing of nucleic acids – Evolution of next generation sequencing – Analysis –	Apply GA	Ns for improving the models.							
UNIT IMACHINE LEARNING IN GENOMICS9Machine Learning for Genomics- Biopython – Genomics Data Analysis – Genome – Genome sequencing – Sanger sequencing of nucleic acids – Evolution of next generation sequencing – Analysis –					-				
Machine Learning for Genomics - Biopython - Genomics Data Analysis - Genome - Genome sequencing - Sanger sequencing of nucleic acids - Evolution of next generation sequencing - Analysis -	UNIT I	MACHINE LEARNING IN GENOMICS			9				
sequencing – Sanger sequencing of nucleic acids – Evolution of next generation sequencing – Analysis –	Machine Learning	g for Genomics - Biopython - Genomics Data Analysis	- (	Geno	ome	– Genome			
	sequencing - Sang	er sequencing of nucleic acids – Evolution of next generation s	sequ	enci	ng -	– Analysis –			
steps – Calculating GC content – nucleotide content- Dinucleotide content – Modelling – Motif finder.	steps – Calculating	g GC content – nucleotide content- Dinucleotide content – Mo	dell	ing	– M	otif finder.			
Case Study: Sequence Analysis of Covid-19	Case Study: Sequ	ence Analysis of Covid-19							
UNIT IIBIOPHYSICAL MACHINE LEARNING9	UNIT II	<b>BIOPHYSICAL MACHINE LEARNING</b>			9				
Molecule - Molecular Bonds - Molecular Graphs - Molecular Conformations - Chirality of Molecules -	Molecule - Molec	ular Bonds - Molecular Graphs - Molecular Conformations - G	Chir	ality	/ of	Molecules -			
Featurizing a Molecule - Graph Convolutions - Protein Structures - Protein Sequences - Biophysical									
Featurizations - Grid Featurization - Atomic Featurization.									
Case Study: Analyzing the PDBBind Dataset.									
UNIT IIIDEEP LEARNING FOR GENOMIC APPLICATIONS9	UNIT III	DEEP LEARNING FOR GENOMIC APPLICATIONS			9				

DNNs for Genom	ics - workflow for Genomics - Protein structure predictions - Regulato	ry genomics –
Gene regulatory N	letworks – Single-cell RNA sequencing – Deep learning libraries for ger	iomics.
Case Study: Dise	ase prediction	
UNIT IV	CNN AND RNN FOR GENOMICS	9
Transfer Learning	- CNNs for Genomics – Applications – Deep Bind – DeepInsight – D	DeepChrome –
DeepVariant – Ap	pplications and use cases of RNNs in Genomics – DeepNano – ProLan	Go – DanQ –
Autoencoders for	genomics – Gene Expression.	
Case Study: Pred	icting Gene expression from TCGA pan-cancer RNA-S using denoising	autoencoders.
UNIT V	MODEL IMPROVEMENT	9
GANs for Improvi	ing Models – Difference between Discriminative and Generative Models	s – Challenges
– synthetic data –	Applications – Analysis of ScRNA-Seq data – Generation of DNA.	C
Case Study: Perso	onalized Medicine	
	TOTAL:	45 PERIODS
<b>OUTCOMES:</b>		
At the end of this	course, the students will be able to:	
CO1: Represent m	nolecules and proteins as features for building machine learning models.	
CO2: Extract inter	rpretable, biological insights from deep learning models.	
CO3: Illustrate the	e applications of deep learning in genomics.	
CO4: Analyze dif	ferent models for Genomic applications.	
CO5: Employ var	ious deep learning tools for genomics.	
CO6: Apply GAN	Is for improving the models.	
<b>TEXT BOOKS:</b>		
1. Upendra K	umar Devisetty, Deep Learning for Genomics: Data-driven approaches	for genomics
application	is in life sciences and biotechnology, packt Publications, 2022.	C
2. Bharath Ra	amsundar, Peter Eastman, Patrick Walters, Vijay Pande, Deep Learning	for the Life
Sciences: A	Applying Deep Learning to Genomics, Microscopy, Drug Discovery & N	More,
O'Reilly, 2	2019.	
<b>REFERENCES:</b>		
1 0 "1		1

- 1. Sanjiban Sekhar Roy, Y.-H. Taguchi, Handbook of Machine Learning Applications for Genomics, Springer, 2022.Shailza Singh, Machine Learning and Systems Biology in Genomics and Health, Springer, 2022.

22AM919	BIO-INFORMATICS L T P 3 0 0	C 3
OBJECT	IVES:	
The Course wi	ll enable learners to:	
• Underst	and and develop models for Biological Data.	
• Impleme	ent image processing Techniques to Bioinformatics Data	
• Impleme	ent Micro Array analysis over Genome Expression.	
• Underst	and the study of simbiology.	
• Underst	and the pharmacokinetic modeling.	
• Underst	and the working model of biological data in Matlab.	
UNIT I	INTRODUCTION	9
Overview of Bi	oinformatics Technologies – Structural Bioinformatics – Data Format and Process	sing –
Secondary Reso	ources and Applications – Role of Structural Bioinformatics – Biological Data	
Integration Syst	em	
UNIT II	BIOINFORMATICS TOOL BOX	9

Sequence Analysis – NGS – Graph Theory – Gene Ontology – Importing Data and Deploy	ying.
UNIT III BIOLOGICAL DATA ANALYSIS	9
Microarray Data Analysis - Mass Spectrometry Data Analysis - Statistical Classification of	of Biological
Data.	_
UNIT IV IMAGE PROCESSING	9
Key Features of Image Processing – Importing and Exporting Images – Image File Forma	ats and Format
Conversion - Pre and Post Processing Images - Spatial Transformations and Image I	Registration –
Microarray Image Analysis.	
UNIT V SYSTEMS BIOLOGY	9
Basics of Enzyme Kinetics – Kinetic Laws – Modeling Biological System: Simulation, Se Analysis, Parameter Estimation using Simbiology – Pharmacokinetic Modeling: Simulation Study – Model of the Yeast Heterotrimeric G Protein Cycle and Glycoly	ensitivity on, Population
TOTAL:	45 PERIODS
OUTCOMES:	
Upon completion of the course, the students will be able to:	
<b>CO1</b> : Develop models for Biological Data.	
CO2: Implement image processing Techniques to Bioinformatics Data	
CO3: Implement Micro Array analysis over Genome Expression.	
<b>CO4</b> : Understand the study of simbiology.	
<b>CO5</b> : Illustrate the pharmacokinetic modeling.	
<b>CO6</b> : Elaborate the working model of biological data in Matlab.	
TEXT BOOKS:	
1. Yi-Ping Phoebe Chen(Ed), "Bioinformatics Technologies", Springer Publications,	2015
2. G. Alterovitz, M. F. Ramoni, "Systems Bioinformatics: An Engineering Case-Base	ed
Approach", Artech House, 2017.	
<b>REFERENCES:</b>	
1. Michael R. King, Nipa A. Mody, "Numerical and Statistical Methods for Bioengir	neering:
Applications in MATLAB", Cambridge University Press, 2011.	
2. John L. Semmlow, "Bio signal and Medical Image Processing", CRC Press, 2004.	
3. Frank C. Hoppensteadt, Charles S. Peskin, "Modeling and Simulation in Medicine	and Life
Sciences", Springer, 2010.	
4. C. Gibas, Per Jambeck, "Developing bio- informatics computer skills", O'Reilly M	ledia, 2001

				1	
22 A MO20	SMART AND INTERACTIVE HEALTHCARE	L	Т	P	С
22AW1920	TECHNOLOGIES	3	0	0	3
OBJECTI	VES:				
The Cour	se will enable learners to:				
• Illu	strate the need and challenges of personalized healthcare.				
• Ex	plore the basic aspects of telehealth and telemedicine.				
• En	umerate mHealth evolution, regulation and applications.				
• De	monstrate the use of virtual reality and games in healthcare.				
• Ela	borate the importance of IoT in healthcare through its applications.				
UNIT I	PERSONALISED HEALTHCARE				9
Personalization	of healthcare: the relationship between data, Digital technologies and	adva	ncec	l an	alytics
– Digital health	measures - Examples in digital health technologies in clinical rese	arch	- Ex	am	ples in
digital health tec	hnologies in care delivery pathway -Challenges in bringing digital he	alth to	echn	olo	gies to

market –Challenges in adoption of digital health technologies.

UNIT II TELEHEALTH AND TELEMEDICINE	9
Telemedicine versus telehealth - Definitions - Technology vs services - Telemedicine technol	logical
requirements – Telehealth technological requirements – Distant health examples – Smart medical s	shirts –
Haptic platform - Overgrown cities - Rural health - Satellite telehealth - Telemedicine of	critical
technologies – Present challenges and benefits – Groundwork for a good telehealth application – En	nabling
telehealth for existing medical application – Case study – Panic disorder – Case study – Diabetes tele	ehealth
framework - Case study - telehealth support for unit care - Medicolegal, ethical and regulatory guid	delines
pertaining to telehealth.	

UNIT III M-HEALTH

Evolution from telemedicine to m-Health – Initial and recent applications – Mobile apps for mHealth -Overview of mHealth apps – Regulation of mHealth apps - Cloud computing definition and selected applications – closed loop solutions for personalized health interventions – Challenges in sensor design and fabrication – Challenges in mining and managing Big health data – Common mHealth and ICT applications – Evidence for mHealth impact –New frontiers in mHealth - Case study –Sleep problems and their implications.

### UNIT IV VIRTUAL REALITY AND GAMES FOR HEALTHCARE

Augmenting mental healthcare – Mobilizing services with virtual reality – Pain – Anxiety and phobias – Stress management – Rehabilitation – Games for improving healthcare – Homo Ludens – Learning through challenges and fun – Physical and functional fidelity – Games for health – Rehabilitation – Crowdsourcing science – Gaming doctor – Games in official Medical programs – Games in skills training outing operating room – Financial and Ethical aspects.

### UNIT V IOT FOR HEALTHCARE

Concept of IoT-Based Healthcare Technology – Ambient intelligence in Healthcare Technologies – Benefits – Challenges – Data handling and resource management – Security and Privacy – Interoperability – Stake holder collaboration and implementation – Technologies that enable IoT – Healthcare – Internet of Medical things – Applications of IoT in Healthcare – Benefits – Challenges.

### **TOTAL: 45 PERIODS**

9

9

9

### **OUTCOMES:**

## Upon completion of the course, the students will be able to:

- **CO1:** Illustrate the need and challenges of personalized healthcare.
- **CO2:** Apply basic aspects of telehealth and telemedicine.
- **CO3**: Demonstrate M-Health evolution, regulation and applications.
- CO4: Elaborate the use of virtual reality and games in healthcare.
- **CO5:** Elaborate the importance of IoT in healthcare through its applications.
- CO6: Apply smart and interactive technologies for healthcare applications.

## TEXT BOOKS:

- 1. Halit Eren and John G Webster, "Telemedicine and Electronic Medicine", CRC Press, Taylor and Francis Group, New York, 2nd edition, 2016.
- 2. Shabbir Syed-Abdul, Xinxin Zhu, Luis Fernandez-Luque, "Digital Health: Mobile and Wearable Devices for participatory Health Applications", Elsevier, Cambridge, 2021.
- 3. Shashi Gogia, "Fundamentals of Telemedicine and Telehealth", Elsevier, Cambridge, USA, 1st Edition, 2020.

### **REFERENCES:**

- 1. Homero Rivas and Katarzyna Wac, "Digital Health: Scaling Healthcare to the World", Health Informatics, Springer, Switzerland, 2018.
- 2. Nishu Gupta and Sara Paiva, "IoT and ICT for Healthcare Applications", Springer Innovations in Communication and Computing, 2020.

# HONOURS VERTICAL – COMPUTATIONAL INTELLIGENCE

				_	~
22AM921	SOFT COMPUTING	L 3	<b>T</b> 0	<u>Р</u> 0	C 3
OBJECTI	VES:	-	-	-	
The Course will	enable learners to:				
• To learn	the basic concepts of Soft Computing.				
To under	stand artificial neural networks.				
To elabor	rate fuzzy systems				
To eluse     To illustr	rate Genetic Algorithms				
To fitust     To discus	are Genetic Augorithms and various Swarm Intelligence alg	orith	me		
	INTRODUCTION	onu	ms.		0
Neural Network	Application Scope of Neural Networks - Fuzzy Logic - Genetic	Δ1σσ	rith	m _ 1	
Systems - Soft C	omputing - Artificial Neural Network - Evolution of Neural Network	rige	Rasic	· Mo	dels of
ANN _ Weight	a = Bias = Threshold = Learning Rate = Momentum Factor = Vi	ioila	nce	Para	meter_
McCulloch–Pitts	Neuron - Linear Senarability - Hebb Network	15110	nee	1 414	meter
	ARTIFICIAL NEURAL NETWORKS				9
Percentron Netw	orks - Adaptive Linear Neuron - Multiple Adaptive Linear Neurons	- Ra	ck-F	Prons	gation
Network - Radia	Basis Function Network - Pattern Association – Auto associative and	d He	tero	asso	ciative
Memory Networ	ks - Bidirectional Associative Memory (BAM) - Honfield Netwo	rks -	- Fix	ed V	Veight
Competitive Net	s - Kohonen Self-Organizing Feature Mans	I KS	1 1/1	Cu	vergite
	FUZZY SYSTEMS				9
Fuzzy Logic - C	lassical Sets (Crisp Sets) - Fuzzy Sets – Fuzzy Relation - Features	of tl	ne N	Iemł	ership
Functions - Fuzz	ification - Methods of Membership Value Assignments - Defuzzifica	tion	- La	mbd	a-Cuts
for Fuzzy Sets	Alpha-Cuts) - Lambda-Cuts for Fuzzy Relations - Defuzzification	n Me	etho	1s –	Fuzzy
Reasoning – Fuz	zv Inference Systems.				
UNIT IV	GENETIC ALGORITHMS				9
<b>Biological Backs</b>	ground - Traditional Optimization and Search Techniques- Genetic A	lgori	thm	and	Search
Space Simple	GA - General Genetic Algorithm - Operators - Stopping Condi	tion	- Co	onstr	aints -
Problem Solvin	g - The Schema Theorem- Classification - Holland Classifier	Syst	ems	- 0	Benetic
Programming - A	Advantages and Limitations- Applications.	•			
	HYBRID SOFT COMPUTING AND SWARM INTELLIGEN	CE			0
UNIIV	ALGORITHMS				9
Neuro-Fuzzy H	ybrid Systems - Genetic Neuro-Hybrid Systems - Genetic Fuzzy	Hył	orid	and	Fuzzy
Genetic Hybrid	Systems - Simplified Fuzzy ARTMAP – Swarm Intelligence Algor	ithm	s - A	Ant (	Colony
Optimization – A	Artificial Bee Colony – Particle Swarm Optimization – Firefly Algor	ithm	•		
	TOT	TAL	: 45	PER	IODS
OUTCOM	IES:				
Upon complet	tion of the course, the students will be able to:				
CO1: Elaborate	the basic concepts of Soft Computing.				
CO2: Discuss	Artificial neural networks and its applications.				
CO3: Apply Fu	zzy logic to solve different applications.				
CO4: Solving	problems using Genetic algorithms.				
CO5: Discuss	various algorithms in Soft computing with its applications and lin	nitat	ions	•	
CO6: Use varie	ous algorithms in Soft computing to solve real-world problems.				

### **TEXT BOOKS:**

- 1. S. N. Sivanandam, S. N. Deepa, "Principles of Soft Computing", Wiley India Pvt. Ltd., 2nd Edition, 2019.
- 2. Adam Slovik, "Swarm Intelligence Algorithms: Modification and Applications", Taylor & Francis, First Edition, 2020.

### **REFERENCES:**

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, Neuro-Fuzzy and Soft Computing, Prentice-Hall of India, 2002.
- 2. Kwang H. Lee, First course on Fuzzy Theory and Applications^{II}, Springer, 2005.
- 3. N.P. Padhy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxford University Press, 2015.
- 4. S. Rajasekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017.

### 5. NPTEL Courses:

**a.** Introduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23_cs40/preview

	Т	т	D	C
22AM922 APPLIED AI and ML	<u>L</u> 3	1	1	3
OBJECTIVES:	5	U	U	5
The Course will enable learners to:				
• Understand and apply statistical methods to analyze and interpret data.				
• Analyze and cluster genomic data using appropriate algorithms.				
• Implement linear regression models to predict outcomes.				
• Evaluate and improve model performance in binary classification tasks.				
• Implement and train neural networks for various tasks.				
UNIT I FOUNDATION OF DATA SCIENCE				9
Python for Data Science- NumPy & Pandas - Data Cleaning and Preparation	I- S	tatis	stics	for Data
Science- Types of Data- Levels of Measurement-Descriptive Statistics-Probabili	ty t	heo	ry -l	Inferential
Statistics-Advanced Visualization Techniques.	•		•	
Case Study: Cardio Good Fitness Data Analysis				
Projects: 1. Food Hub Analysis				
2. FIFO World Cup Analysis				
3. Mobile Internet Usage Analysis				
UNIT II MAKING SENSE OF UNSTRUCTURED DATA				9
Introduction to Supervised & Unsupervised Learning- Handling Imbalanced	d I	Data	sets	-K-Means
Clustering algorithm, Dimensionality Reduction techniques (PCA, t-SNE	E)-V	/isu	alizi	ing High
Dimensional Data-Comparsion of t-SNE with PCA-Combining PCA with t-SNE.				
Case Study: Genomic Data Clustering				
Project: Fantasy Sports Clustering Analysis				
UNIT III REGRESSION AND PREDICTION				9
Introduction to Linear Regression-OLS Method-Cost function and Optimization	on-	Gra	dien	t Descent
Algorithm-Multiple Linear Regression-Elastic Net, Model Evaluation Techniq	jues	s in	sol	ving Real
World Regression Problems.				
Case Studies: 1. Hospital LOS Prediction				
2.Big Mart Sales Prediction				
Project: Super Kart Sales Prediction				

UNIT IV CLASSIFICATION AND HYPOTHESIS TESTING	9
Concepts of Classification algorithms- Model Performance- Application of Binary C	Classification-
Multi class classification-Multi label classification-Challenges in solving real world	classification
problems.	
Case Studies: 1.HR Employee Attrition Prediction	
2. KC Roasters Coffee Quality Prediction	
Projects: 1. Travel Package Purchase Prediction	
2. Potential Customers Prediction	
UNIT V DEEP LEARNING	9
Implementation of Neural Networks-Data Quality & Quantity-Data Augmentation- Hyp	per parameter
tuning-Computational Challenges -Transformer Networks-Transfer learning -solving	g real world
Neural Network based Problems.	-
Case Study: 1. Audio MNLST Digit Recognition,	
2. Street View Housing Number Digit Recognition	
Project: Food Image Classification	
TOTAL: 4	5 PERIODS
OUTCOMES:	
At the end of this course, the students will be able to:	
<b>CO1:</b> Apply statistical techniques to interpret data and make data-driven decisions.	
<b>CO2</b> : Utilize dimensionality reduction techniques such as PCA and t-SNE to simp	lify complex
datasets.	<b>J</b>
<b>CO3:</b> Apply regression techniques to real-world problems.	
<b>CO4:</b> Perform hypothesis testing to validate assumptions and make inferences from data	a.
<b>CO5:</b> Apply deep learning techniques to solve practical problems.	
CO6: Implement the concepts of AI and ML to solve various applications.	
TEXT BOOKS:	
1. Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das, Machine Learning, F	earson,
2019.	
2. Ethem Alpaydin, Introduction to Machine Learning, Adaptive Computation and	Machine
Learning Series, Third Edition, MIT Press, 2014.	
3. Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reill	y Media,
2017.	
4. Deep Learning, Ian Goodfellow, Yoshua Bengio Aaron Courville, MIT Press, 20	)17.
5. Neural Networks and Deep Learning, Michael Nielsen, Determination Press, 202	15.
REFERENCES:	
1. Anuradha Srinivasaraghavan, Vincy Joseph, Machine Learning, First Edition, Wile	ey, 2019.
2. Peter Harrington, "Machine Learning in Action", Manning Publications, 2012.	
3. Stephen Marsland, "Machine Learning – An Algorithmic Perspective", Second Edition	on, Chapman
and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.	-
4. Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013.	
5. Christoph Molnar, "Interpretable Machine Learning - A Guide for Making Black	Box Models
Explainable", Creative Commons License, 2020.	
6. Deep Learning with TensorFlow: Explore neural networks with Python, Giancarlo Zaccor	ne, Md. Rezaul
Karim, Ahmed Menshawy, Packt Publisher, 2017.	
7 Deep Learning with Karge Antonia Culli Suii Bal. Deelt Dublichers 2017	

- Deep Learning with Keras, Antonio Gulli, SujitPal, Packt Publishers, 2017.
   Deep Learning with Python", Francois Chollet, Manning Publications, 2017
- 9. https://olympus.mygreatlearning.com/courses

22434022		L	Т	Р	С
22AM923	<b>RECOMMENDER SYSTEMS</b>	3	0	0	3
OBJECTIVE	S:				
The Course w	ill enable learners to:				
• To und	erstand the foundations of the recommender system.				
To lear	n about collaborative filtering.				
To disc	uss content-based recommendation systems.				
To elab	orate on the evaluation paradigms for a recommendation system.				
• To mak	te students design and implement a recommender system.				
UNIT I	INTRODUCTION TO RECOMMENDER SYSTEMS				9
Introduction -	Basic Models of Recommender Systems - Domain-Specific Challeng	ges in	Rec	omm	iender
Systems - Co	ld-Start Problem – Attack-Resistant Recommender Systems – Grou	p – N	Iulti	i-Crit	eria –
Active-Learnin	ng – Privacy - Application Domains.				
UNIT II	COLLABORATIVE FILTERING				9
Neighborhood	Based Collaborative Filtering - Key Properties - Predicting Rat	ings -	- C	luste	ring -
Dimensionality	Reduction - A Regression Modeling - Graph Models - Model-	based	Co	llabo	orative
Filtering - De	ecision and Regression Trees - Rule-Based Collaborative Filter	ing -	Na	ive	Bayes
Collaborative I	Filtering – Latent Factor Models.				
UNIT III	CONTENT-BASED RECOMMENDATION				9
Basic Compon	ents of Content-Based Systems - Preprocessing and Feature Extract	ion -	Lea	rning	g User
Profiles and Fi	ltering - Content-Based Versus Collaborative Recommendations - U	Jsing	Con	tent-	Based
Models for Co	llaborative Filtering.	-			
UNIT IV	DESIGN EVALUATION				9
Evaluating Par	adigms – General Goals of Evaluation Design-Design Issues in Offlir	ne Reo	com	menc	ler
Evaluation-Ac	curacy Metrics in Offline Evaluation-Limitations of Evaluation Meas	ures.			
UNIT V	TYPES OF RECOMMENDATION SYSTEMS				9
Content-based	Recommender Systems - Basic Components - Constraint-based Rec	comm	end	er Sy	vstems
- Context-sens	itive Recommender Systems - Social and Trust-Centric Recommender	er Sys	tem	s.	
	ΤΟ	TAL:	45	PER	IODS
OUTCO	MES:				
Upon complet	ion of the course, the students will be able to:				
CO1: Elabora	te the foundations of the recommender system.				
CO2: Use coll	aborative filtering to design recommendation systems.				
CO3: Discuss	content-based recommendation systems.				
CO4: Elabora	te on the evaluation paradigms for a recommendation system.	• ~			
COS: Use app	COS. Use appropriate type of recommendation systems to solve real-world problems.				
TEXT BOOK					
1 Charu (	7 Aggarwal Recommender Systems: The Textbook Springer 2016				
2. Jannach	D. Zanker M., FelFering A., Friedrich G., Recommender Systems:	An In	trod	uctio	m.
Cambri	dge University Press, First Edition, 2011.				7
REFERI	ENCES:				

- 1. Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Mining of massive datasets, 3rd edition, Cambridge University Press, 2020.
- 2. Ricci, F., Rokach, L. and Shapira, B., Introduction to recommender systems handbook. In Recommender systems handbook, Springer, 2011.
- 3. Manouselis N., Drachsler H., Verbert K., Duval E., Recommender Systems For Learning, Springer, First Edition, 2013.

22AM924	KNOWLEDGE ENGINEERING		T	P	C 2
OD IECTIVES.		3	U	U	3
• To unders	tand the basics of Knowledge Engineering				
<ul> <li>To diagonal</li> </ul>	and the basics of Knowledge Engineering.				
• To discus	s reasoning under uncertainty.				
• To design	and develop ontologies.				
• To apply 1	reasoning with ontologies and rules.				
• To unders	tand learning and rule learning.				
UNITI	INTRODUCTION				9
Knowledge, Repr	resentation and Reasoning - Need for Logic – First order logic – Sy	ntax	– S	ema	antics –
Pragmatics- Impl	icit and Explicit Belief - Expressing Knowledge - Resolution - P	ropo	ositi	ona	l case -
Horn Logic – Hor	rn clauses - Procedural Control of Reasoning.				
UNIT II	REASONING UNDER UNCERTAINTY				9
Introduction – A	bductive reasoning – Probabilistic reasoning: Enumerative Probabi	ilitie	;s –	Sul	ojective
Bayesian view –	Belief Functions - Baconian Probability - Fuzzy Probability - Uno	certa	inty	me	thods -
Evidence-based r	easoning – Intelligent Agent – Mixed-Initiative Reasoning – Knowle	edge	Eng	gine	ering –
Evidence-based r	easoning task: Intelligent Analysis.				
UNIT III	<b>ONTOLOGIES – DESIGN AND DEVELOPMENT</b>				9
Concepts and In	nstances – Generalization Hierarchies – Object Features – De	fini	ng ]	Feat	tures –
Representation –	Transitivity – Inheritance – Concepts as Feature Values – Ontology	Mat	chin	ıg.	
Design and Devel	lopment Methodologies – Steps in Ontology Development – Domain	Unc	lerst	and	ing and
Concept Elicitation	on – Modelling-based Ontology Specification.				U
UNIT IV	REASONIING WITH ONTOLOGIES AND RULES				9
Production System	m Architecture – Complex Ontology-based Concepts – Reduction a	and	Synt	thes	is rules
and the Inference	Engine – Evidence-based hypothesis analysis – Rule and Ontology N	/latc]	hing	s - F	artially
Learned Knowled	dge – Reasoning with Partially Learned Knowledge - Rules in Pro	oduc	tion	Sy	stems -
Object-Oriented I	Representation - Structured Descriptions.			•	
UNIT V	LEARNING AND RULE LEARNING				9
Machine Learnin	g – Concepts – Generalization and Specialization Rules – Types –	Ind	ucti	ve	concept
learning from Exa	amples – Learning with an Incomplete Representation Language – F	orm	al d	efin	ition of
Generalization.					
Modelling, Learn	ing and Problem Solving - Rule learning and Refinement - Overvie	w.			
	ΤΟΤΑ	L:	<b>45</b> (	PE	RIODS
<b>OUTCOMES:</b>					
At the end of thi	s course, the students will be able to:				
CO1: Elaborate	the basics of Knowledge Representation and Knowledge Engineerin	g.			
CO2: Develop re	easoning under uncertainty.				
CO3: Design and	d develop ontologies.				
CO4: Implement	t ontology-based reasoning systems.				
CO5: Understan	d learning and rule learning.				

CO6: Integrating knowledge representation and reasoning in intelligent systems.

### **TEXT BOOKS:**

- 1. Ronald J. Brachman, Hector J. Levesque: Knowledge Representation and Reasoning, Morgan Kaufmann, 2004.
- 2. Gheorghe Tecuci, Dorin Marcu, Mihai Boicu, David A. Schum, Knowledge Engineering Building Cognitive Assistants for Evidence-based Reasoning, Cambridge University Press, First Edition, 2016.

### **REFERENCES:**

- 1. Ela Kumar, Knowledge Engineering, I K International Publisher House, 2018.
- 2. John F. Sowa: Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks/Cole, Thomson Learning, 2000.
- 3. King, Knowledge Management and Organizational Learning, Springer, 2009.
- 4. Jay Liebowitz, Knowledge Management Learning from Knowledge Engineering, 1st Edition,2001.

22AM925	COMPUTATIONAL NEUROSCIENCE	L	Τ	P	С
221111725		3	0	0	3
OBJECTIVES	:				
To unde	rstand what nervous systems do and determine how they function.				
• To expl	ore the computational principles governing various aspects of visio	n, s	ensc	ory-	motor
control,	learning, and memory.				
• To analyze neural models.					
To learn	to extract information through neural encoding and decoding.				
To invest	stigate models of synaptic plasticity and learning in the brain.				
UNIT I	NEURAL ENCODING				9
Firing Rates an	d Spike Statistics: Introduction- Spike Trains and Firing Rates - What	Ma	kes	a N	euron
Fire? Spike-Tra	in Statistics – The Neural Code				
Reverse Correla	ation and Visual Receptive Fields – Estimating Firing Rates Introduc	tior	ı to	the	Early
Visual System	Reverse-Correlation Methods: Simple Cells Static Non linearities:	Cor	nple	x C	ells -
Receptive Field	s in the Retina and LGN Constructing Visual Receptive Fields				
UNIT II	NEURAL DECODING AND INFORMATION THEORY				9
Discrimination	- Population Decoding - Spike-Train Decoding				
Information Th	eory: Entropy and Mutual Information - Information and Entropy	Ma	ıxim	nizat	ion –
Entropy and Inf	formation for Spike Trains				
UNIT III	MODEL NEURONS				9
Phase Plane Ar	alysis – I - Phase Plane Analysis – II - Analyzing HHE – Bifurcatio	ns -	Ot	ther	Point
Models – Leve	els of Neuron Modeling-Conductance-Based Models - The Cable	Equ	atio	n- l	Multi-
compartment models					
UNIT IV	NETWORK MODELS				9
Firing Rate Mo	dels – Feedforward Networks – Recurrent Networks – Excitatory-Inhib	oitor	y No	etwo	orks –
Stochastic Netw	zorks				
UNIT V	PLASTICITY				9
Synaptic Transi	nission and Synaptic Strength - Ways of Modification of Synaptic Str	reng	;th -	Тy	pes of
Plasticity - Sho	t Term Plasticity - Long Term Plasticity - Computational Implication	c			

### **OUTCOMES:**

### At the end of this course, the students will be able to:

**CO1**: Elaborate the fundamentals of neural encoding.

**CO2**: Apply neural encoding techniques.

**CO3**: Use Information Theory to decode neural signals.

**CO4**: Analyze and model the dynamics of neurons.

**CO5**: Design and analyze neural networks.

**CO6**: Implement the concepts of synaptic plasticity.

### **TEXT BOOKS:**

- 1. Dayan, Peter, and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press, 2005. ISBN: 9780262041997.
- 2. Paul Miller, An Introductory Course in Computational Neuroscience, MIT Press, 2018.

### **REFERENCES:**

- 1. Signal and Systems, Alan V. Oppenheim, Alan S. Willsky, Syed Hamid Nawab Prentice Hall, 1997.
- 2. Methods in Neuronal Modeling, Second Edition From Ions to Networks, Edited by Christof Koch and Idan Segev, MIT Press
- 3. Ionic Channels of Excitable Membranes, Second Edition, Bertil Hille, Sinauer Associates Inc.,1992
- 4. NPTEL: Computational Neuroscience Course (nptel.ac.in)

224 14026	A T FOOTNINT A T O	L	Т	P	С		
22AN1920	AI ESSENTIALS	3	0	0	3		
<b>OBJECTIVES:</b>							
The Cours	e will enable learners:						
• To familia	arize the concepts and recent technologies in AI.						
• To use ge	nerative AI in building applications.						
• To learn t	<ul> <li>To learn to design inputs for AI tools by using prompt engineering.</li> </ul>						
• To use tools and frameworks in explainable AI.							
• To build AI systems with the principles of responsible AI.							
• To unders	stand the basics of Quantum AI.						
UNIT I	GENERATIVE AI				9		
Introduction - Ty	pes of Generative AI models – GANs – VAE – Diffusion Models	$\overline{s-I}$	DAL	L-E	2 model		
- Stability AI and	Midjourney – Speech – Large Language Models – Language an	d In	telli	gen	ce – NLP		
- Word2Vec Me	odel - Transformers - Dials - BERT - GPT Systems and C	hatC	GPT-	· Aı	ito Code		
Generation – Wo	rking – Copilot.						
UNIT II	PROMPT ENGINEERING				9		
Basics - In-Con	text Learning – In-Context Prompting – Techniques – Image	Pror	npti	ng -	- Prompt		
Hijacking – Chal	lenges.						
UNIT III	EXPLAINABLE AI				9		
Introduction – Pr	oposed AI Model - Proposed Architecture - XAI Methods and t	heir	cla	ssifi	cations –		
Forms of Explanation	ation – Frameworks for Model Interpretability and Explanation –	Met	hods	s and	d Metrics		
for Explaining AI Models – Evaluation measures and applications for Explainable AI.							
UNIT IV	<b>RESPONSIVE AI</b>				9		
Ethical Decision	Making – Approaches to Ethical Reasoning by AI – Designing Ar	tific	ial N	Aora	al Agents		
- Ethical Deliberations - Levels of Ethical Behaviour - Ethical Status of AI Systems - Governance for							

Responsible AI – Codes of Conduct – Inclusion and Diversity – AI and Society – Super-intel	ligence –
Responsible AI.	
UNIT V QUANTUM ML	9
Quantum ML - Grover search algorithm - Quantum RL - Quantum annealing - Quantur	n Neural
Networks - Topographic representation - Quantum ML - Brain - Topographic basis	maps –
Topographic qubit maps – conversions between representations – applications.	
TOTAL:45 PI	ERIODS
OUTCOMES:	
At the end of this course, the students will be able to:	
<b>CO1:</b> Elaborate the concepts and recent technologies in AI.	
<b>CO2:</b> Apply generative AI in building applications.	
<b>CO3:</b> Design inputs for AI tools by using prompt engineering.	
<b>CO4:</b> Use tools and frameworks in explainable AI.	
<b>CO5:</b> Build AI systems with the principles of responsible AI.	
<b>CO6:</b> Understand the basics of Quantum AI.	
TEXT BOOKS:	
1. Tom Taulli, "Generative AI - How Chatgpt and other AI Tools will Revolutionize B	usiness",
Apress, 2023.	
2. Mayuri Mehta, Vasile Palade, Indranath Chatterjee, Explainable AI: Foundations, Metho	odologies
and Applications, Springer, 2023.	
3. Virginia Dignum, Responsible Artificial Intelligence, How to Develop and Use	Al in a
Responsible Way, Springer, 2019.	G (
4. Siddhartha Bhattacharyya, Indrajit Pan, Ashish Mani, Sourav De, Elizabeth Benrman	, Susanta
Chakraborti, Quantum Machine Learning, De Gruyter Frontiers in Computational Inte	singence,
2020.	
<b>KEFERENCES:</b> 1 Den Auffanth Concentive Alwith Long Chain Dealst Dublishing 2022	
1. Den Auffarui, Generative AI with Lang Unain, Packt Publishing, 2023.	
2. Anni Daniee, Generative AI III Action, Manning Fublication, FIFSt Edition, 2025.	noo"
5. Gaunele Granni, Fiene-Euouaru Foruer, Auvances in Explainable Affificial internget	ice,
1VID1 1, 2027.	

 Santanu Pattanayak, Quantum Machine Learning with Python - Using Cirq from Google Research and IBM Qiskit, Apress, 2021.



# R2022

# **MINOR DEGREE**

# **OFFERED BY**

DEPARTMENT OF ARTIFICIAL INTELLIGENCE

# AND MACHINE LEARNING

# (for other B.E. / B.Tech. Programmes)

For the Students admitted during 2022-2023 & 2023-2024

#### R2022

### MINOR DEGREE CURRICULUM OFFERED BY DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (for other B.E. / B.Tech. Programmes)

### MINOR DEGREE IN ARTIFICIAL INTELLIGENCE

### CURRICULUM

SI. No	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	Т	Р	С
1.	22AM004	Introduction to Data Science	3	3	0	0	3
2.	22AM005	Introduction to Artificial Intelligence	3	3	0	0	3
3.	22AM006	Machine Learning Algorithms	3	3	0	0	3
4.	22AM007	Foundations of Deep Learning	3	3	0	0	3
5.	22AM812	Capstone Project	12	0	0	12	6

### **SYLLABUS**

22AM004	INTRODUCTION TO DATA SCIENCE	L 3	T	P	C 3
OBIECTIVES		5	U	U	3
• To elaborat	te the fundamentals of data science process				
To chapora     To demons	trate various python libraries for data science				
<ul> <li>To demons</li> <li>To discuss</li> </ul>	the various classification algorithms				
To discuss     To discuss	the clustering and outlier detection approaches				
• To discuss	deta using visualization tools in Dython				
• To present					
UNIT I	INTRODUCTION				9
Data Science: Ben	efits and uses - facets of data - Data Science Process: Overview - De	fini	ng r	esea	rch
goals - Retrieving	g data - data preparation - Exploratory Data analysis - build the mod	el -	- pre	esent	ing
findings and build	ing applications - Data Mining - Data Warehousing – Basic statistical	des	crip	tion	s of
Data					
UNIT II	PYTHON LIBRARIES FOR DATA SCIENCE				9
Launching the IPy	thon Shell - Launching the Jupyter Notebook - IPython Magic Comman	ds -	· The	Ba	sics
of NumPy Arrays	-Universal Functions – Aggregations – Computation on Arrays – Fai	ncy	Ind	exin	g –
Sorting arrays – S	Structured data – Data manipulation with Pandas – Data Indexing a	nd	Sele	ctio	n –
Handling missing	data - Hierarchical indexing - Combining datasets - Aggregation a	nd	Gro	upin	g –
String operations -	- Working with time series – High performance Pandas.				
UNIT III	CLASSIFICATION				9
Basic Concepts – I	Decision Tree Induction – Bayes Classification Methods – Rule-Based	Clas	ssifi	catic	n –
Model Evaluation	and Selection.				
Bayesian Belief No	etworks – Classification by Backpropagation – Support Vector Machine	:s –	Asso	ocia	ive
Classification – K	-Nearest-Neighbor Classifiers - Fuzzy Set Approaches - Multiclass	Clas	ssifi	catic	n -
Semi-Supervised (	Classification.				
UNIT IV	CLUSTERING AND OUTLIER DETECTION				9
Cluster Analysis –	Partitioning Methods – Evaluation of Clusters – Probabilistic Model-Ba	asec	d Ch	ister	ing
– Outliers and Out	tlier Analysis – Outlier Detection Methods – Statistical Approaches –	Clu	ister	ing	and
Classification-Bas	ed Approaches.				
UNIT V	DATA VISUALIZATION				9
Importing Matplot	lib – Simple line plots – Simple scatter plots – visualizing errors – dens	ity	and	cont	our
plots – Histograms	– legends – colors – subplots – text and annotation – customization – the	ee o	lime	ensic	nal
plotting - Geograp	hic Data with Basemap - Visualization with Seaborn.				20
	TOTAL:	45	PE.	RIO	DS
OUTCOMES:					
At the end of this	course, the students will be able to:				
COI: Interpre	t the fundamentals of data science process.				
CO2: Apply p	bython libraries for data science applications.				
CO3: Apply a	ind interpret basic classification algorithms.				
CO4: Outline	clustering and outlier detection approaches.				
COS: Present	and interpret data using visualization tools in Python.				
TEVT DOUG	ent basic data science techniques using Python.				
1 David Cial	on Armo D. P. Moveman and Mahamad Ali "Introducing Data Sais	nac	יי א.	lonn	ina
1. David Clei Dublication	en, Arno D. D. Meysman, and Monamed An, Introducing Data Scie	nee	, IV	iaiiii	mg
i uoncation	19, 2010.				

- 2. Jiawei Han, Micheline Kamber, Jian Pei, "Data Mining: Concepts and Techniques", 3rd Edition, Morgan Kaufmann, 2012.
- 3. Jake Vander Plas, "Python Data Science Handbook: Essential Tools for Working with Data", Kindle Edition, 2017.

### **REFERENCES:**

- 1. Roger D. Peng, R Programming for Data Science, Lulu.com, 2016.
- 2. Laura Igual, Santi Seguí, "Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications", 1st Edition, Springer, 2017.
- 3. Peter Bruce, Andrew Bruce, "Practical Statistics for Data Scientists: 50 Essential Concepts", 3rd Edition, O'Reilly, 2017.
- 4. Avrim Blum, John Hopcroft, Ravi Kannan, "Foundations of Data Science", 1st Edition, Cambridge University Press, 2020.

### **NPTEL:**

- 5. Data Science for Engineers <u>https://onlinecourses.nptel.ac.in/noc24_cs53/preview</u>
- 6. Foundation of Data Science <u>https://onlinecourses.swayam2.ac.in/imb24_mg31/preview</u>
- 7. Python for Data Science <u>https://onlinecourses.nptel.ac.in/noc24_cs54/preview</u>

		L	Т	Р	С
22AM005	INTRODUCTION TO ARTIFICIAL INTELLIGENCE	3	0	0	3
<b>OBJECTIVES:</b>					
• To discuss the table of table	ne foundations of AI and various intelligent agents				
• To discuss p	roblem solving search strategies and game playing				
To describe	logical agents and first-order logic				
• To illustrate	problem-solving strategies with knowledge representation mechanis	m fo	or so	lvir	ıg
hard problem	18				-
• To summarize	ze the basics of learning and expert systems.				
UNIT I	ARTIFICIAL INTELLIGENCE AND INTELLIGENT AGEN	ГS			9
Introduction to AI - Foundations of Artificial Intelligence - Intelligent Agents - Agents and Environmen					nents
- Concept of ration	ality - Nature of environments - Structure of agents - Problem s	olvi	ng a	ager	nts –
Example Problems	- Search Algorithms – Uninformed Search Strategies		-	-	
UNIT II	PROBLEM SOLVING				9
Heuristic search st	rategies – heuristic functions- Game Playing – Mini-max Algor	ithn	1 -	Opt	imal
decisions in games	- Alpha-beta search -Monte-Carlo search for Games - Constr	aint	sati	isfac	ction
problems - Constrai	int propagation – Backtracking search for CSP – Local search for CS	5P –	Stru	ictu	re of
CSP					
UNIT III	LOGICAL AGENTS				9
Knowledge-based a	gents - Logic - Propositional logic - Propositional theorem proving	; – F	rop	ositi	onal
model checking – A	gents based on propositional logic				
First-Order Logic -	Syntax and semantics - Using First-Order Logic - Knowledge rep	pres	enta	tion	and
engineering - Infere	ences in first-order logic - Propositional Vs First-Order Inference -	Uni	fica	tion	and
First-Order Inference	e - Forward chaining – Backward chaining - Resolution				
UNIT IV	KNOWLEDGE REPRESENTATION AND PLANNING				9
Ontological enginee	ring - Categories and objects - Events - Mental objects and modal lo	gic	– Re	easo	ning
systems for categori	es – Reasoning with default information				
Classical planning -	- Algorithms for classical planning – Heuristics for planning – Hiera	rchi	cal j	olan	ning
- Non-deterministic	domains – Time, schedule, and resources - Analysis				
UNIT V	LEARNING AND EXPERT SYSTEMS				9

Forms of Learning – Developing Machine Learning systems – Statistical Learning - Deep Learning: Simple feed-forward network - Neural Networks – Reinforcement Learning: Learning from rewards – Passive and active Reinforcement learning.

Expert Systems: Functions – Main structure – if-then rules for representing knowledge – developing the shell – Dealing with uncertainty.

### **TOTAL: 45 PERIODS**

# **OUTCOMES:** At the end of this course, the students will be able to:

**CO1**: Summarize the foundations of AI and various Intelligent agents.

- **CO2**: Apply search strategies in problem solving and game playing.
- **CO3**: Outline logical agents and first-order logic.
- **CO4**: Apply problem-solving strategies with knowledge representation mechanism for solving hard problems.
- **CO5**: Use the different forms of learning and expert systems.
- CO6: Elaborate on the various concepts and algorithms of artificial intelligence.

### **TEXT BOOKS:**

- 1. Peter Norvig and Stuart Russel, Artificial Intelligence: A Modern Approach, Pearson, 4th Edition, 2020.
- 2. Bratko, Prolog: Programming for Artificial Intelligencell, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011.

### **REFERENCES:**

- 1. Elaine Rich, Kevin Knight and B.Nair, Artificial Intelligence 3rd Edition, McGraw Hill, 2017.
- 2. Melanie Mitchell, Artificial Intelligence: A Guide for Thinking Humans. Series: Pelican Books, 2020
- 3. Ernest Friedman-Hill, Jess in Action, Rule-Based Systems in Java, Manning Publications, 2003
- 4. Nils J. Nilsson, The Quest for Artificial Intelligence, Cambridge University Press, 2009.
- 5. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems,1st Edition by Patterson, Pearson, India, 2015

### NPTEL:

- 6. Introduction to Artificial Intelligence https://onlinecourses.nptel.ac.in/noc24_cs08/
- 7. Fundamentals of Artificial intelligence https://onlinecourses.nptel.ac.in/noc24_ge47/
- 8. Artificial Intelligence : Search Methods For Problem solving https://onlinecourses.nptel.ac.in/noc24_cs88/

22AM006 MACHINE LEARNING ALGORITHMS		L	Т	Р	С
22A111000	MACHINE LEARNING ALGORITHVIS	3	0	0	3
<b>OBJECTIVES:</b>					
<ul> <li>To discuss the basics of Machine Learning and Supervised Algorithms.</li> </ul>					
• To understand the various classification algorithms.					
• To study d	• To study dimensionality reduction techniques.				
<ul> <li>To elabora</li> </ul>	te on unsupervised learning techniques.				
<ul> <li>To discuss</li> </ul>	various Graphical models and understand the basics of reinforcement	it lea	arnii	ıg.	
UNIT I	INTRODUCTION				9
Machine Learning – Types – Applications – Preparing to Model – Activities – Data – Exploring structure					
of Data – Data Quality and Remediation – Data Pre-processing – Modelling and Evaluation: Selecting a					
Model -Training a	Model – Model representation and Interpretability – Evaluating I	Perf	orma	ance	e of a

Model – Improving Performance.

UNIT II	FEATURE ENGINEERING AND DIMENSIONALITY REDUCTION	9			
Feature Engineeri	ng - Feature Transformation - Feature Subset Selection - Principle Comp	onent			
Analysis - Featu	re Embedding – Factor Analysis – Singular value decomposition and N	<b>I</b> atrix			
Factorization - M	Iultidimensional scaling – Linear Discriminant Analysis – Canonical Corre	lation			
Analysis – Isomap	– Locally linear Embedding – Laplacian Eigenmaps.				
UNIT III	SUPERVISED LEARNING	9			
Linear Regression	-Relation between two variables - Steps - Evaluation - Logistic Regress	ion –			
Decision Tree – Algorithms – Construction – Classification using Decision Tree – Issues – Rule-based					
Classification – Pruning the Rule Set – Support Vector Machines – Linear SVM – Optimal Hyperplane					
- Radial Basis Fur	nctions – Naïve Bayes Classifier – Bayesian Belief Networks.				
UNIT IV	UNSUPERVISED LEARNING	9			
Clustering – Types – Applications - Partitioning Methods – K-means Algorithm – K-Medoids –					
Hierarchical method	ods – Density based methods DBSCAN – Finding patterns using Association Ru	les –			
Hidden Markov M	lodel.				
UNIT V	NEURAL NETWORKS AND TYPES OF LEARNING	9			
<b>Biological Neuror</b>	n – Artificial Neuron – Types of Activation function – Implementations of A	NN –			
Architectures of N	leural Networks – Learning Process in ANN – Back propagation – Deep Learn	ing –			
Representation Le	arning - Active Learning - Instance based Learning - Association Rule Learn	ing –			
Ensemble Learnin	g Algorithm – Regularization Algorithm- Reinforcement Learning – Elements- M	lodel-			
based- Temporal I	Difference Learning.				
TOTAL: 45 PERIODS					
OUTCOMES:					
At the end of this	course, the students will be able to:				
CO1: Differentiate the basics of Machine Learning and Supervised Algorithms.					

CO3: Study dimensionality reduction techniques.

CO4: Elaborate on unsupervised learning techniques.

CO5: Outline various Graphical models and understand the basics of reinforcement learning.

**CO6**: Solve real-world problems using machine learning algorithms.

### **TEXT BOOKS:**

- 1. Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das, "Machine Learning", Pearson, 2019.
- 2. Ethem Alpaydin, "Introduction to Machine Learning, Adaptive Computation and Machine Learning Series", Third Edition, MIT Press, 2014.

### **REFERENCES:**

- 1. Anuradha Srinivasaraghavan, Vincy Joseph, "Machine Learning", First Edition, Wiley, 2019.
- 2. Peter Harrington, "Machine Learning in Action", Manning Publications, 2012.
- 3. Stephen Marsland, "Machine Learning An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 4. Tom M Mitchell, "Machine Learning", First Edition, McGraw Hill Education, 2013.
- 5. Christoph Molnar, "Interpretable Machine Learning A Guide for Making Black Box Models Explainable", Creative Commons License, 2020.

### NPTEL:

6. Introduction to Machine Learning - <u>https://onlinecourses.nptel.ac.in/noc24_cs101/</u>

22AM007	FOUNDATIONS OF DEEP LEARNING	L T P C 3 0 0 3	
<b>OBJECTIVES:</b>			
To out	line the basics of deep neural networks.		
To disc	cuss advanced deep learning models.		
To disc	cuss CNN and RNN architectures of deep neural networks.		
To ela	porate autoencoders in neural networks.		
To disc	cuss the deep generative models.		
UNIT I	DEEP NETWORKS	9	)
Challenges motiv	ating deep learning - Deep feedforward networks - Learning XOR	- Gradient base	ed
learning - Hidden	Units - Architecture Design - Back Propagation - Regularization -	- Parameter Norn	m
Penalties – Const	rained Optimization – Under-Constrained Problems – Dataset Augn	nentation – Nois	se
Robustness – Sem	i-Supervised Learning – Multi-Task Learning – Early Stopping – Par	ameter Tying an	nd
Sharing – Bagging	g and Other Ensemble methods – Dropout – Adversarial Training.		
UNIT II	<b>OPTIMIZATION FOR TRAINING DEEP MODELS</b>	9	)
Pure optimization	- Challenges - Basic Algorithms - Parameter initialization Strateg	gies – Algorithm	ns
with Adaptive Lea	urning Rates – Approximate Second-Order methods – Optimization St	rategies and Met	ta
Algorithms.			
UNIT III	CONVOLUTIONAL AND RECURRENT NEURAL NETWOR	RKS 9	1
Convolution Oper	ation – motivation – Pooling – Infinitely Strong prior – Variants – St	ructured Output	;—
Data Types – Effi	cient Convolutional Algorithms – Random or Unsupervised features	<ul> <li>Neuroscientifi</li> </ul>	ïc
Basis - Deep Lea	arning – Sequence Modelling - Computational Graphs - RNN - Bid	irectional RNN	_
Encoder-Decoder	- Sequence to Sequence RNN - Deep Recurrent Networks - Recursive	Neural Network	KS
Long Term Dep	endencies; Leaky Units – Strategies for multiple time scales – LSTM	and Gated RNN	١s
– Optimization for	r Long Term Dependencies.		
	AUTOENCODERS	9	
Autoencoders: Un	dercomplete autoencoders - Regularized autoencoders – Power, Lay	er Size and Dept	th
- Stochastic encod	ers and decoders – Denoising Autoencoders - Learning with autoenco	ders – contractiv	ve
Autoencoders – A	ppications of autoencoders.	0	0
	DEEP GENERATIVE MODELS	9 Dec. Delterrer	,
Boltzmann Mach	ine – Restricted Boltzmann Machine – Deep Bener Networks –	Deep Boltzman	m
Poltzmann Mach	zinanii Machines for Real-valued Data – Convolutional Boltzii	lann Machines	-
Generative Model	s	ets – Evaluatin	Ig
	5. TOTA	· 15 PERIOD	)C
OUTCOMES	1014	L. 431 ERIOD	6
At the end of this	course the students will be able to.		
<b>CO1</b> : Outline the	basics of deep neural networks.		
CO2: Develop ad	vanced deep learning models		
CO3: Implement	CNN and RNN architectures of deep neural networks		
<b>CO4</b> : Interpret au	toencoders in neural networks.		
<b>CO5</b> : Apply deep	generative models to solve real world problems.		
CO6: Build deep	learning models and evaluate them.		
TEXT BOOKS:			
1. Ian Goodfellow	y, Yoshua Bengio, Aaron Courville, ``Deep Learning", MIT Press, 20	)16.	
<b>REFERENCES:</b>			
1. Charu C. A Publishing	Aggarwal, ``Neural Networks and Deep Learning: A Textbook", Sprir	nger Internationa	al
2. Yoav Gol	dberg, ``Neural Network Methods for Natural Language Proce	ssing", Synthesi	is

Lectures on Human Language Technologies, Morgan & Claypool publishers, 2017.

- 3. Francois Chollet, ``Deep Learning with Python", Manning Publications Co, 2018.
- 4. Josh Patterson, Adam Gibson, ``Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017.
- 5. Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress, 2018.

## NPTEL:

- 6. Deep Learning <u>https://onlinecourses.nptel.ac.in/noc24_ee04/preview</u>
- 7. Deep Learning IIT Ropar https://onlinecourses.nptel.ac.in/noc24_cs59/preview